Introduction
In the previous chapter, we learned how to handle pandas
DataFrames as inputs for data visualization, how to plot with pandas
and seaborn
, and how to refine plots to increase their aesthetic appeal. The intent of this chapter is to acquire practical knowledge about the strengths and limitations of various visualization techniques. We'll practice creating plots for a variety of different contexts. However, you will notice that the variety in existing plot types and visualization techniques is huge, and choosing the appropriate visualization becomes confusing. There are times when a plot shows too much information for the reader to grasp or too little for the reader to get the necessary intuition regarding the data. There are times when a visualization is too esoteric for the reader to appreciate properly, and other times when an over-simplistic visualization just doesn't have the right impact. All these scenarios can be avoided by being armed with practical knowledge...