Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Vision and Behavior for Self-Driving Cars

You're reading from   Hands-On Vision and Behavior for Self-Driving Cars Explore visual perception, lane detection, and object classification with Python 3 and OpenCV 4

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781800203587
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Krishtof Korda Krishtof Korda
Author Profile Icon Krishtof Korda
Krishtof Korda
Luca Venturi Luca Venturi
Author Profile Icon Luca Venturi
Luca Venturi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: OpenCV and Sensors and Signals
2. Chapter 1: OpenCV Basics and Camera Calibration FREE CHAPTER 3. Chapter 2: Understanding and Working with Signals 4. Chapter 3: Lane Detection 5. Section 2: Improving How the Self-Driving Car Works with Deep Learning and Neural Networks
6. Chapter 4: Deep Learning with Neural Networks 7. Chapter 5: Deep Learning Workflow 8. Chapter 6: Improving Your Neural Network 9. Chapter 7: Detecting Pedestrians and Traffic Lights 10. Chapter 8: Behavioral Cloning 11. Chapter 9: Semantic Segmentation 12. Section 3: Mapping and Controls
13. Chapter 10: Steering, Throttle, and Brake Control 14. Chapter 11: Mapping Our Environments 15. Assessments 16. Other Books You May Enjoy

Retraining

Sometimes, once you get a neural network that performs well, you job is done. Sometimes, however, you might want to retrain it on new samples, to get better precision (as your dataset is now bigger) or to get fresher results if your training dataset becomes obsolete relatively quickly.

In some cases, you might even want to retrain continuously, for example, every week, and have the new model automatically deployed in production.

In this case, it's critical that you have a strong procedure in place to verify the performance of your new model in the validation dataset and, hopefully, in a new, throwaway test dataset. It may also be advisable to keep a backup of all the models and try to find a way to monitor the performance in production, to quickly identify anomalies. In the case of a self-driving car, I expect a model to undergo rigorous automated and manual testing before being deployed in production, but other industries that don't have safety concerns...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image