Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Simulation Modeling with Python

You're reading from   Hands-On Simulation Modeling with Python Develop simulation models for improved efficiency and precision in the decision-making process

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804616888
Length 460 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1:Getting Started with Numerical Simulation
2. Chapter 1: Introducing Simulation Models FREE CHAPTER 3. Chapter 2: Understanding Randomness and Random Numbers 4. Chapter 3: Probability and Data Generation Processes 5. Part 2:Simulation Modeling Algorithms and Techniques
6. Chapter 4: Exploring Monte Carlo Simulations 7. Chapter 5: Simulation-Based Markov Decision Processes 8. Chapter 6: Resampling Methods 9. Chapter 7: Using Simulation to Improve and Optimize Systems 10. Chapter 8: Introducing Evolutionary Systems 11. Part 3:Simulation Applications to Solve Real-World Problems
12. Chapter 9: Using Simulation Models for Financial Engineering 13. Chapter 10: Simulating Physical Phenomena Using Neural Networks 14. Chapter 11: Modeling and Simulation for Project Management 15. Chapter 12: Simulating Models for Fault Diagnosis in Dynamic Systems 16. Chapter 13: What’s Next? 17. Index 18. Other Books You May Enjoy

Classifying simulation models

Simulation models can be classified according to different criteria. The first distinction is between static and dynamic systems. So, let’s see what differentiates them.

Comparing static and dynamic models

A system is an object with a finite number of degrees of freedom that evolves over time according to a deterministic law. A system can be represented as a black box that can be stimulated by a stress (input) x (t) and that produces an effect (output) y (t). The behavior of the system is fully described by the following equation:

Static models are the representation of a system in an instant of time or representative models of a system in which the time variable plays no role. An example of a static simulation is a Monte Carlo model.

Figure 1.2: Static versus dynamic system representation

Figure 1.2: Static versus dynamic system representation

Dynamic models, on the other hand, describe the evolution of the system over time. In the simplest case, the state of the system at time t is described by a function x (t). For example, in population dynamics, x (t) represents the population present at time t. The equation that regulates the system is dynamic: it describes the instantaneous variation of the population or the variation in fixed time intervals.

Comparing deterministic and stochastic models

A model is deterministic when its evolution, over time, is uniquely determined by its initial conditions and characteristics. These models do not consider random elements and lend themselves to be solved with exact methods that are derived from mathematical analysis. In deterministic models, the output is well determined once the input data and the relationships that make up the model have been specified, despite the time required for data processing being particularly long. For these systems, the transformation rules univocally determine the change of state of the system. Examples of deterministic systems can be observed in some production and automation systems.

Stochastic models, on the other hand, can be evolved by inserting random elements into the evolution. These are obtained by extracting them from statistical distributions. Among the operational characteristics of these models, there is not just one relationship that fits all. There are also probability density functions, which means there is no one-to-one correspondence between the data and system history.

A final distinction is based on how the system evolves over time: therefore, we distinguish between continuous and discrete simulation models.

Comparing continuous and discrete models

Continuous models represent systems in which the state of the variables changes continuously as a function of time. For example, a car moving on a road represents a continuous system since the variables that identify it, such as position and speed, can change continuously with respect to time.

In discrete models, the system is described by an overlapping sequence of physical operations interspersed with inactivity pauses. These operations begin and end in well-defined instances (events). The system undergoes a change of state when each event occurs, remaining in the same state throughout the interval between the two subsequent events. This type of operation is easy to treat with the simulation approach.

Important note

The stochastic, deterministic, continuous, or discrete nature of a model is not its absolute property and depends on the observer’s vision of the system itself. This is determined by the objectives and the method of study, as well as by the experience of the observer.

Now that we’ve analyzed the different types of models in detail, we will learn how to develop a numerical simulation model.

You have been reading a chapter from
Hands-On Simulation Modeling with Python - Second Edition
Published in: Nov 2022
Publisher: Packt
ISBN-13: 9781804616888
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime