Before understanding Trust Region Policy Optimization (TRPO), we need to understand constrained policy optimization. We know that in RL agents learn by trial and error to maximize the reward. To find the best policy, our agents will explore all different actions and choose the one that gives a good reward. While exploring different actions there is a very good chance that our agents will explore bad actions as well. But the biggest challenge is when we allow our agents to learn in the real world and when the reward functions are not properly designed. For example, consider an agent learning to walk without hitting any obstacles. The agent will receive a negative reward if it gets hit by any obstacle and a positive reward for not getting hit by any obstacle. To figure out the best policy, the agent explores different actions. The agent also takes...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine