Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Neural Networks

You're reading from   Hands-On Neural Networks Learn how to build and train your first neural network model using Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781788992596
Length 280 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Leonardo De Marchi Leonardo De Marchi
Author Profile Icon Leonardo De Marchi
Leonardo De Marchi
Laura Mitchell Laura Mitchell
Author Profile Icon Laura Mitchell
Laura Mitchell
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started FREE CHAPTER
2. Getting Started with Supervised Learning 3. Neural Network Fundamentals 4. Section 2: Deep Learning Applications
5. Convolutional Neural Networks for Image Processing 6. Exploiting Text Embedding 7. Working with RNNs 8. Reusing Neural Networks with Transfer Learning 9. Section 3: Advanced Applications
10. Working with Generative Algorithms 11. Implementing Autoencoders 12. Deep Belief Networks 13. Reinforcement Learning 14. Whats Next? 15. Other Books You May Enjoy

Discriminative versus generative algorithms

In order to comprehend generative algorithms, it can be helpful to contrast them with discriminative algorithms. When input data is fed into a discriminative algorithm, it aims to predict the label to which the data belongs. As such, the algorithm aims to map features to labels. Generative algorithms, on the other hand, do the opposite; they aim to predict features given a certain label.

Let's compare these two types of models in the context of whether an email is spam. We can consider x to be the model feature; for example, all of the words in the email. We can also consider the target variable, y, to state whether the email is actually spam. In such a scenario, the discriminative and generative models will aim to answer the following questions:

  • Discriminative model p(y|x): Given the input features, x, what is the probability...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image