Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Image Processing with Python

You're reading from   Hands-On Image Processing with Python Expert techniques for advanced image analysis and effective interpretation of image data

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789343731
Length 492 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sandipan Dey Sandipan Dey
Author Profile Icon Sandipan Dey
Sandipan Dey
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
1. Getting Started with Image Processing 2. Sampling, Fourier Transform, and Convolution FREE CHAPTER 3. Convolution and Frequency Domain Filtering 4. Image Enhancement 5. Image Enhancement Using Derivatives 6. Morphological Image Processing 7. Extracting Image Features and Descriptors 8. Image Segmentation 9. Classical Machine Learning Methods in Image Processing 10. Deep Learning in Image Processing - Image Classification 11. Deep Learning in Image Processing - Object Detection, and more 12. Additional Problems in Image Processing 1. Other Books You May Enjoy Index

Image derivatives – Gradient and Laplacian


We can compute the (partial) derivatives of a digital image using finite differences. In this section, let us discuss how to compute the image derivatives, Gradient and Laplacian, and why they are useful. As usual, let us start by importing the required libraries, as shown in the following code block:

import numpy as np
from scipy import signal, misc, ndimage
from skimage import filters, feature, img_as_float
from skimage.io import imread
from skimage.color import rgb2gray
from PIL import Image, ImageFilter
import matplotlib.pylab as pylab

Derivatives and gradients

The following diagram shows how to compute the partial derivatives of an image I (which is a function f(x, y)), using finite differences (with forward and central differences, the latter one being more accurate), which can be implemented using convolution with the kernels shown. The diagram also defines the gradient vector, its magnitude (which corresponds to the strength of an edge), and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime