Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Graph Neural Networks Using Python

You're reading from   Hands-On Graph Neural Networks Using Python Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781804617526
Length 354 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Maxime Labonne Maxime Labonne
Author Profile Icon Maxime Labonne
Maxime Labonne
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Part 1: Introduction to Graph Learning
2. Chapter 1: Getting Started with Graph Learning FREE CHAPTER 3. Chapter 2: Graph Theory for Graph Neural Networks 4. Chapter 3: Creating Node Representations with DeepWalk 5. Part 2: Fundamentals
6. Chapter 4: Improving Embeddings with Biased Random Walks in Node2Vec 7. Chapter 5: Including Node Features with Vanilla Neural Networks 8. Chapter 6: Introducing Graph Convolutional Networks 9. Chapter 7: Graph Attention Networks 10. Part 3: Advanced Techniques
11. Chapter 8: Scaling Up Graph Neural Networks with GraphSAGE 12. Chapter 9: Defining Expressiveness for Graph Classification 13. Chapter 10: Predicting Links with Graph Neural Networks 14. Chapter 11: Generating Graphs Using Graph Neural Networks 15. Chapter 12: Learning from Heterogeneous Graphs 16. Chapter 13: Temporal Graph Neural Networks 17. Chapter 14: Explaining Graph Neural Networks 18. Part 4: Applications
19. Chapter 15: Forecasting Traffic Using A3T-GCN 20. Chapter 16: Detecting Anomalies Using Heterogeneous GNNs 21. Chapter 17: Building a Recommender System Using LightGCN 22. Chapter 18: Unlocking the Potential of Graph Neural Networks for Real-World Applications
23. Index 24. Other Books You May Enjoy

To get the most out of this book

You should have a basic understanding of graph theory and machine learning concepts, such as supervised and unsupervised learning, training, and the evaluation of models to maximize your learning experience. Familiarity with deep learning frameworks, such as PyTorch, will also be useful, although not essential, as the book will provide a comprehensive introduction to the mathematical concepts and their implementation.

Software covered in the book

Operating system requirements

Python 3.8.15

Windows, macOS, or Linux

PyTorch 1.13.1

Windows, macOS, or Linux

PyTorch Geometric 2.2.0

Windows, macOS, or Linux

To install Python 3.8.15, you can download the latest version from the official Python website: https://www.python.org/downloads/. We strongly recommend using a virtual environment, such as venv or conda.

Optionally, if you want to use a Graphics Processing Unit (GPU) from NVIDIA to accelerate training and inference, you will need to install CUDA and cuDNN:

CUDA is a parallel computing platform and API developed by NVIDIA for general computing on GPUs. To install CUDA, you can follow the instructions on the NVIDIA website: https://developer.nvidia.com/cuda-downloads.

cuDNN is a library developed by NVIDIA, which provides highly optimized GPU implementations of primitives for deep learning algorithms. To install cuDNN, you need to create an account on the NVIDIA website and download the library from the cuDNN download page: https://developer.nvidia.com/cudnn.

You can check out the list of CUDA-enabled GPU products on the NVIDIA website: https://developer.nvidia.com/cuda-gpus.

To install PyTorch 1.13.1, you can follow the instructions on the official PyTorch website: https://pytorch.org/. You can choose the installation method that is most appropriate for your system (including CUDA and cuDNN).

To install PyTorch Geometric 2.2.0, you can follow the instructions in the GitHub repository: https://pytorch-geometric.readthedocs.io/en/2.2.0/notes/installation.html. You will need to have PyTorch installed on your system first.

Chapter 11 requires TensorFlow 2.4. To install it, you can follow the instructions on the official TensorFlow website: https://www.tensorflow.org/install. You can choose the installation method that is most appropriate for your system and the version of TensorFlow you want to use.

Chapter 14 requires an older version of PyTorch Geometric (version 2.0.4). It is recommended to create a specific virtual environment for this chapter.

Chapter 15, Chapter 16, and Chapter 17 require a high GPU memory usage. You can lower it by decreasing the size of the training set in the code.

Other Python libraries are required in some or most chapters. You can install them using pip install <name==version>, or using another installer depending on your configuration (such as conda). Here is the complete list of required packages with the corresponding versions:

  • pandas==1.5.2
  • gensim==4.3.0
  • networkx==2.8.8
  • matplotlib==3.6.3
  • node2vec==0.4.6
  • seaborn==0.12.2
  • scikit-learn==1.2.0
  • deepchem==2.7.1
  • torch-geometric-temporal==0.54.0
  • captum==0.6.0

The complete list of requirements is available on GitHub at https://github.com/PacktPublishing/Hands-On-Graph-Neural-Networks-Using-Python. Alternatively, you can directly import notebooks in Google Colab at https://colab.research.google.com.

If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image