Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Python Data Analysis

You're reading from   Getting Started with Python Data Analysis Learn to use powerful Python libraries for effective data processing and analysis

Arrow left icon
Product type Paperback
Published in Nov 2015
Publisher
ISBN-13 9781785285110
Length 188 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (10) Chapters Close

Preface 1. Introducing Data Analysis and Libraries FREE CHAPTER 2. NumPy Arrays and Vectorized Computation 3. Data Analysis with Pandas 4. Data Visualization 5. Time Series 6. Interacting with Databases 7. Data Analysis Application Examples 8. Machine Learning Models with scikit-learn Index

Array functions

Many helpful array functions are supported in NumPy for analyzing data. We will list some part of them that are common in use. Firstly, the transposing function is another kind of reshaping form that returns a view on the original data array without copying anything:

>>> a = np.array([[0, 5, 10], [20, 25, 30]])
>>> a.reshape(3, 2)
array([[0, 5], [10, 20], [25, 30]])
>>> a.T
array([[0, 20], [5, 25], [10, 30]])

In general, we have the swapaxes method that takes a pair of axis numbers and returns a view on the data, without making a copy:

>>> a = np.array([[[0, 1, 2], [3, 4, 5]], 
 [[6, 7, 8], [9, 10, 11]]])
>>> a.swapaxes(1, 2)
array([[[0, 3],
    [1, 4],
    [2, 5]],
   [[6, 9],
    [7, 10],
    [8, 11]]])

The transposing function is used to do matrix computations; for example, computing the inner matrix product XT.X using np.dot:

>>> a = np.array([[1, 2, 3],[4,5,6]])
>>> np.dot(a.T, a)
array([[17, 22, 27],
   [22...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image