Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Kubernetes, Second Edition

You're reading from   Getting Started with Kubernetes, Second Edition Orchestrate and manage large-scale Docker deployments

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781787283367
Length 286 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Jonathan Baier Jonathan Baier
Author Profile Icon Jonathan Baier
Jonathan Baier
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction to Kubernetes FREE CHAPTER 2. Pods, Services, Replication Controllers, and Labels 3. Networking, Load Balancers, and Ingress 4. Updates, Gradual Rollouts, and Autoscaling 5. Deployments, Jobs, and DaemonSets 6. Storage and Running Stateful Applications 7. Continuous Delivery 8. Monitoring and Logging 9. Cluster Federation 10. Container Security 11. Extending Kubernetes with OCP, CoreOS, and Tectonic 12. Towards Production Ready

Persistent storage


So far, we only worked with workloads that we could start and stop at will, with no issue. However, real-world applications often carry state and record data that we prefer (even insist) not to lose. The transient nature of containers themselves can be a big challenge. If you recall our discussion of layered file systems in Chapter 1, Introduction to Kubernetes, the top layer is writable. (It's also frosting, which is delicious.) However, when the container dies, the data goes with it. The same is true for crashed containers that Kubernetes restarts.

This is where volumes or disks come into play. A volume that exists outside the container allows us to save our important data across containers outages. Further, if we have a volume at the pod level, data can be shared between containers in the same application stack and within the same pod.

Docker itself has some support for volumes, but Kubernetes gives us persistent storage that lasts beyond the lifetime of a single container...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image