Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Create succinct and expressive implementations with functional programming in Python

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784396992
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introducing Functional Programming FREE CHAPTER 2. Introducing Some Functional Features 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements Index

Using an immutable namedtuple as a record

In Chapter 3, Functions, Iterators, and Generators, we showed two common techniques to work with tuples. We've also hinted at a third way to handle complex structures. We can do any of the following, depending on the circumstances:

  • Use lambdas (or functions) to select a named item using the index
  • Use lambdas (or functions) with *parameter to select an item by parameter name, which maps to an index
  • Use namedtuples to select an item by attribute name or index

Our trip data, introduced in Chapter 4, Working with Collections, has a rather complex structure. The data started as an ordinary time series of position reports. To compute the distances covered, we transposed the data into a sequence of legs with a start position, end position, and distance as a nested three-tuple.

Each item in the sequence of legs looks as follows as a three-tuple:

first_leg= ((37.54901619777347, -76.33029518659048), (37.840832, -76.273834), 17.7246)

This is a short trip between...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime