Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Forecasting Time Series Data with Prophet

You're reading from   Forecasting Time Series Data with Prophet Build, improve, and optimize time series forecasting models using Meta's advanced forecasting tool

Arrow left icon
Product type Paperback
Published in Mar 2023
Publisher Packt
ISBN-13 9781837630417
Length 282 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Greg Rafferty Greg Rafferty
Author Profile Icon Greg Rafferty
Greg Rafferty
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Getting Started with Prophet
2. Chapter 1: The History and Development of Time Series Forecasting FREE CHAPTER 3. Chapter 2: Getting Started with Prophet 4. Chapter 3: How Prophet Works 5. Part 2: Seasonality, Tuning, and Advanced Features
6. Chapter 4: Handling Non-Daily Data 7. Chapter 5: Working with Seasonality 8. Chapter 6: Forecasting Holiday Effects 9. Chapter 7: Controlling Growth Modes 10. Chapter 8: Influencing Trend Changepoints 11. Chapter 9: Including Additional Regressors 12. Chapter 10: Accounting for Outliers and Special Events 13. Chapter 11: Managing Uncertainty Intervals 14. Part 3: Diagnostics and Evaluation
15. Chapter 12: Performing Cross-Validation 16. Chapter 13: Evaluating Performance Metrics 17. Chapter 14: Productionalizing Prophet 18. Index 19. Other Books You May Enjoy

Neural networks

A relatively recent development in time series forecasting is the use of Recurrent Neural Networks (RNNs). This was made possible with the development of the Long Short-Term Memory (LSTM) unit by Sepp Hochreiter and Jürgen Schmidhuber in 1997. Essentially, an LSTM unit allows a neural network to process a sequence of data, such as speech or video, instead of a single data point, such as an image.

A standard RNN is called recurrent because it has loops built into it, which is what gives it memory, that is, gives it access to previous information. A basic neural network can be trained to recognize an image of a pedestrian on a street by learning what a pedestrian looks like from previous images, but it cannot be trained to identify that a pedestrian in a video will soon be crossing the street based upon the pedestrian’s approach observed in previous frames of the video. It has no knowledge of the sequence of images that leads to the pedestrian stepping out into the road. Short-term memory is what the network needs temporarily to provide context, but that memory degrades quickly.

Early RNNs had a memory problem: it just wasn’t very long. In the sentence “airplanes fly in the …,” a simple RNN may be able to guess the next word will be sky, but with “I went to France for vacation last summer. That’s why I spent my spring learning to speak …,” it’s not so easy for the RNN to guess that French comes next; it understands that the word for a language should come next but has forgotten that the phrase started by mentioning France. An LSTM, though, has this necessary context. It gives the network’s short-term memory more longevity. In the case of time series data, where patterns can reoccur over long time scales, LSTMs can perform very well.

Time series forecasting with LSTMs is still in its infancy when compared to the other forecasting methods discussed here; however, it shows promise. One strong advantage over other forecasting techniques is the ability of neural networks to capture non-linear relationships, but as with any deep learning problem, LSTM forecasting requires a great deal of data and computing power and a long processing time.

Additionally, there are many decisions to be made regarding the architecture of the model and the hyperparameters to be used, which necessitate a very experienced forecaster. In most practical problems, where budget and deadlines must be considered, an ARIMA model is often the better choice.

You have been reading a chapter from
Forecasting Time Series Data with Prophet - Second Edition
Published in: Mar 2023
Publisher: Packt
ISBN-13: 9781837630417
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image