Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Feature Engineering Made Easy

You're reading from   Feature Engineering Made Easy Identify unique features from your dataset in order to build powerful machine learning systems

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781787287600
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Divya Susarla Divya Susarla
Author Profile Icon Divya Susarla
Divya Susarla
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Feature Engineering FREE CHAPTER 2. Feature Understanding – What's in My Dataset? 3. Feature Improvement - Cleaning Datasets 4. Feature Construction 5. Feature Selection 6. Feature Transformations 7. Feature Learning 8. Case Studies 9. Other Books You May Enjoy

Principal Component Analysis


Principal Component Analysis is a technique that takes datasets that have several correlated features and projects them onto a coordinate (axis) system that has fewer correlated features. These new, uncorrelated features (which I referred to before as a super-columns) are called principal components. The principal components serve as an alternative coordinate system to the original feature space that requires fewer features and captures as much variance as possible. If we refer back to our example with the cameras, the principal components are exemplified by the cameras themselves.

Put another way, the goal of the PCA is to identify patterns and latent structures within datasets in order to create new columns and use these columns instead of the original features. Just as in feature selection, if we start with a data matrix of size n x d where n is the number of observations and d is the number of original features, we are projecting this matrix onto a matrix...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image