When we say parametric assumptions, we are referring to base assumptions that algorithms make about the shape of the data. In the previous chapter, while exploring principal component analysis (PCA), we discovered that the end result of the algorithm produced components that we could use to transform data through a single matrix multiplication. The assumption that we were making was that the original data took on a shape that could be decomposed and represented by a single linear transformation (the matrix operation). But what if that is not true? What if PCA is unable to extract useful features from the original dataset? Algorithms such as PCA and linear discriminate analysis (LDA) will always be able to find features, but they may not be useful at all. Moreover, these algorithms rely on a predetermined equation and will always output...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand