Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Feature Engineering Made Easy

You're reading from   Feature Engineering Made Easy Identify unique features from your dataset in order to build powerful machine learning systems

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781787287600
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Divya Susarla Divya Susarla
Author Profile Icon Divya Susarla
Divya Susarla
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Feature Engineering FREE CHAPTER 2. Feature Understanding – What's in My Dataset? 3. Feature Improvement - Cleaning Datasets 4. Feature Construction 5. Feature Selection 6. Feature Transformations 7. Feature Learning 8. Case Studies 9. Other Books You May Enjoy

Summary

Feature improvement is about recognizing areas of issue and improvement in our data and figuring out which cleaning methods will be the most effective. Our main takeaway should be to look at data with the eyes of a data scientist. Instead of immediately dropping rows/columns with problems, we should think about the best ways of fixing these problems. More often than not, our machine learning performance will thank us in the end.

This chapter contains several ways of dealing with issues with our quantitative columns. The next chapter will deal with the imputing of categorical columns, as well as how to introduce brand new features into the mix from existing features. We will be working with scikit-learn pipelines with a mix of numerical and categorical columns to really expand the types of data we can work with.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image