Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Ensemble Machine Learning Cookbook

You're reading from   Ensemble Machine Learning Cookbook Over 35 practical recipes to explore ensemble machine learning techniques using Python

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789136609
Length 336 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vijayalakshmi Natarajan Vijayalakshmi Natarajan
Author Profile Icon Vijayalakshmi Natarajan
Vijayalakshmi Natarajan
Dipayan Sarkar Dipayan Sarkar
Author Profile Icon Dipayan Sarkar
Dipayan Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Get Closer to Your Data FREE CHAPTER 2. Getting Started with Ensemble Machine Learning 3. Resampling Methods 4. Statistical and Machine Learning Algorithms 5. Bag the Models with Bagging 6. When in Doubt, Use Random Forests 7. Boosting Model Performance with Boosting 8. Blend It with Stacking 9. Homogeneous Ensembles Using Keras 10. Heterogeneous Ensemble Classifiers Using H2O 11. Heterogeneous Ensemble for Text Classification Using NLP 12. Homogenous Ensemble for Multiclass Classification Using Keras 13. Other Books You May Enjoy

Introduction

In this book, we will cover various ensemble techniques and will learn how to ensemble multiple machine learning algorithms to enhance a model's performance. We will use pandas, NumPy, scikit-learn, and Matplotlib, all of which were built for working with Python, as we will do throughout the book. By now, you should be well aware of data manipulation and exploration.

In this chapter, we will recap how to read and manipulate data in Python, how to analyze and treat missing values, and how to explore data to gain deeper insights. We will use various Python packages, such as numpy and pandas, for data manipulation and exploration, and seaborn packages for data visualization. We will continue to use some or all of these libraries in the later chapters of this book as well. We will also use the Anaconda distribution for our Python coding. If you have not installed Anaconda, you need to download it from https://www.anaconda.com/download. At the time of writing this book, the latest version of Anaconda is 5.2, and comes with both Python 3.6 and Python 2.7. We suggest you download Anaconda for Python 3.6. We will also use the HousePrices dataset, which is available on GitHub.

You have been reading a chapter from
Ensemble Machine Learning Cookbook
Published in: Jan 2019
Publisher: Packt
ISBN-13: 9781789136609
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image