Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Distributed Computing with Python

You're reading from   Distributed Computing with Python Harness the power of multiple computers using Python through this fast-paced informative guide

Arrow left icon
Product type Paperback
Published in Apr 2016
Publisher
ISBN-13 9781785889691
Length 170 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rasheedh B Rasheedh B
Author Profile Icon Rasheedh B
Rasheedh B
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. An Introduction to Parallel and Distributed Computing FREE CHAPTER 2. Asynchronous Programming 3. Parallelism in Python 4. Distributed Applications – with Celery 5. Python in the Cloud 6. Python on an HPC Cluster 7. Testing and Debugging Distributed Applications 8. The Road Ahead Index

Summary


Writing and running small- or medium-sized distributed applications in Python is not hard. There are many high-quality frameworks that we can leverage among others, for example, Celery, Pyro, various job schedulers, Twisted, MPI bindings (not discussed in this book), or the multiprocessing module in the standard library.

The real difficulty, however, lies in monitoring and debugging our applications, especially because a large fraction of our code runs concurrently on many different, often remote, computers.

The most insidious bugs are those that end up producing incorrect results (for example, because of data becoming corrupted along the way) rather than raising an exception, which most frameworks are able to catch and bubble up.

The monitoring and debugging tools that we can use with Python code are, sadly, not as sophisticated as the frameworks and libraries we use to develop that same code. The consequence is that large teams end up developing their own, oftentimes, very specialized...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image