Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Distributed Computing with Python

You're reading from   Distributed Computing with Python Harness the power of multiple computers using Python through this fast-paced informative guide

Arrow left icon
Product type Paperback
Published in Apr 2016
Publisher
ISBN-13 9781785889691
Length 170 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rasheedh B Rasheedh B
Author Profile Icon Rasheedh B
Rasheedh B
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. An Introduction to Parallel and Distributed Computing FREE CHAPTER 2. Asynchronous Programming 3. Parallelism in Python 4. Distributed Applications – with Celery 5. Python in the Cloud 6. Python on an HPC Cluster 7. Testing and Debugging Distributed Applications 8. The Road Ahead Index

Chapter 2. Asynchronous Programming

In this chapter, we are finally going to write some code! The code in this chapter and all the chapters that follow is written for Python 3.5 (the current release at the time of writing). When modules, syntaxes, or language constructs are not available in earlier versions of Python (for example, Python 2.7), these will be pointed out in this chapter. In general, however, the code presented here should work on Python 2.x with some minor modifications.

Let's go back to some of the ideas presented in the previous chapter. We know that we can structure our algorithms and programs so that they can run on a local machine or on one or more computers across a network. Even when our code runs on a single machine, as we saw, we can use multiple threads and/or multiple processes so that its various parts can run at the same time on multiple CPUs.

We will now pause thinking about multiple CPUs and instead look at a single thread/process of execution...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image