Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Deep Learning with MXNet Cookbook
Deep Learning with MXNet Cookbook

Deep Learning with MXNet Cookbook: Discover an extensive collection of recipes for creating and implementing AI models on MXNet

Arrow left icon
Profile Icon Andrés P. Torres
Arrow right icon
$27.98 $39.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (1 Ratings)
eBook Dec 2023 370 pages 1st Edition
eBook
$27.98 $39.99
Paperback
$49.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Andrés P. Torres
Arrow right icon
$27.98 $39.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (1 Ratings)
eBook Dec 2023 370 pages 1st Edition
eBook
$27.98 $39.99
Paperback
$49.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$27.98 $39.99
Paperback
$49.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Deep Learning with MXNet Cookbook

Working with MXNet and Visualizing Datasets – Gluon and DataLoader

In the previous chapter, we learned how to set up MXNet. We also verified how MXNet could leverage our hardware to provide maximum performance. Before applying deep learning (DL) to solve specific problems, we need to understand how to load, manage, and visualize the datasets we will be working with. In this chapter, we will start using MXNet to analyze some toy datasets in the domains of numerical regression, data classification, image classification, and text classification. To manage those tasks efficiently, we will see new MXNet libraries and functions such as Gluon (an API for DL) and DataLoader.

In this chapter, we will cover the following topics:

  • Understanding regression datasets – loading, managing, and visualizing the House Sales dataset
  • Understanding classification datasets – loading, managing, and visualizing the Iris dataset
  • Understanding image datasets – loading...

Technical requirements

Apart from the technical requirements specified in the Preface, no other requirements apply to this chapter.

The code for this chapter can be found at the following GitHub URL: https://github.com/PacktPublishing/Deep-Learning-with-MXNet-Cookbook/tree/main/ch02

Furthermore, you can directly access each recipe from Google Colab; for example, for the first recipe of this chapter, visit https://colab.research.google.com/github/PacktPublishing/Deep-Learning-with-MXNet-Cookbook/blob/main/ch02/2_1_Toy_Dataset_for_Regression_Load_Manage_and_Visualize_House_Sales_Dataset.ipynb.

Understanding regression datasets – loading, managing, and visualizing the House Sales dataset

The training process of machine learning (ML) models can be divided into three main sub-groups:

  • Supervised learning (SL): The expected outputs are known for at least some data
  • Unsupervised learning (UL): The expected outputs are not known but the data has some features that could help with understanding its internal distribution
  • Reinforcement learning (RL): An agent explores the environment and makes decisions based on the inputs acquired from the environment

There is also an approach that falls in between the first two sub-groups called weakly SL, where there are not enough known outputs to follow an SL approach for one of the following reasons:

  • The outputs are inaccurate
  • Only some of the output features are known (incomplete)
  • They are not exactly the expected outputs but are connected/related to the task we intend to achieve (inexact)
...

Understanding classification datasets – loading, managing, and visualizing the Iris dataset

In the previous recipe, we studied one of the most common problem types in SL: regression. In this recipe, we will take a closer look at another of these problem types: classification.

In classification problems, we want to estimate a categorial output, a class, from a set of given classes, using a variable number of input features. In this recipe, we will analyze a toy classification dataset from Kaggle: the Iris dataset, one of the most renowned classification datasets.

The Iris dataset presents the problem of estimating the iris class of the flower of plants, from three classes (iris setosa, iris versicolor, and iris virginica) with the help of the following four features:

  • Sepal length (in cm)
  • Sepal width (in cm)
  • Petal length (in cm)
  • Petal width (in cm)

These data features are provided for 150 flowers, with 50 instances for each of the 3 classes (making...

Understanding image datasets – loading, managing, and visualizing the Fashion-MNIST dataset

One of the fields that has grown considerably in DL in the last years has been computer vision (CV). Since the AlexNet revolution in 2012, CV has expanded from lab research to surpassing human performance in real-world datasets (known as “in the wild”).

In this recipe, we will explore the simplest CV task: image classification. Given a set of images, our task is to correctly classify that image among a given set of labels (classes).

One of the most classic image classification datasets is the MNIST (which stands for the Modified National Institute of Standards and Technology) database. Similarly sized, but more suited for current CV analysis, is the Fashion-MNIST dataset. This dataset is a multi-label image classification dataset, with a training set of 60k examples and a test set of 10k examples, with each example belonging to 1 of these 10 categories (starting with...

Understanding text datasets – loading, managing, and visualizing the Enron Email dataset

Another field that has grown considerably in DL in recent years is natural language processing (NLP). Similarly to CV, this field aims to surpass human performance in real-world datasets.

In this recipe, we will explore one of the simplest NLP tasks: text classification. Given a set of sentences and paragraphs, our task is to correctly classify that text among a given set of labels (classes).

One of the most classic text classification tasks is to distinguish whether received email is spam or not (ham). These datasets are binary text classification datasets (only two labels to assign, 0 and 1, or ham and spam).

In our specific scenario, we will use a real-world email dataset. This set of emails was made public during the investigation of the Enron scandal in the early 2000s by the US Government. This dataset was first published in 2004 and is composed of emails from ~150 users,...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Create scalable deep learning applications using MXNet products with step-by-step tutorials
  • Implement tasks such as transfer learning, transformers, and more with the required speed and scalability
  • Analyze model performance and fine-tune for accuracy, scalability, and speed
  • Purchase of the print or Kindle book includes a free PDF eBook

Description

Explore the capabilities of the open-source deep learning framework MXNet to train and deploy neural network models and implement state-of-the-art (SOTA) architectures in Computer Vision, natural language processing, and more. The Deep Learning with MXNet Cookbook is your gateway to constructing fast and scalable deep learning solutions using Apache MXNet. Starting with the different versions of MXNet, this book helps you choose the optimal version for your use and install your library. You’ll work with MXNet/Gluon libraries to solve classification and regression problems and gain insights into their inner workings. Venturing further, you’ll use MXNet to analyze toy datasets in the areas of numerical regression, data classification, picture classification, and text classification. From building and training deep-learning neural network architectures from scratch to delving into advanced concepts such as transfer learning, this book covers it all. You'll master the construction and deployment of neural network architectures, including CNN, RNN, LSTMs, and Transformers, and integrate these models into your applications. By the end of this deep learning book, you’ll wield the MXNet and Gluon libraries to expertly create and train deep learning networks using GPUs and deploy them in different environments.

Who is this book for?

This book is for data scientists, machine learning engineers, and developers who want to work with Apache MXNet for building fast and scalable deep learning solutions. Python programming knowledge and access to a working coding environment with Python 3.6+ is necessary to get started. Although not a prerequisite, a solid theoretical understanding of mathematics for deep learning will be beneficial.

What you will learn

  • Grasp the advantages of MXNet and Gluon libraries
  • Build and train network models from scratch using MXNet
  • Apply transfer learning for more complex, fine-tuned network architectures
  • Address modern Computer Vision and NLP problems using neural network techniques
  • Train state-of-the-art models with GPUs and leverage modern optimization techniques
  • Improve inference run-times and deploy models in production

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 29, 2023
Length: 370 pages
Edition : 1st
Language : English
ISBN-13 : 9781800562905
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Dec 29, 2023
Length: 370 pages
Edition : 1st
Language : English
ISBN-13 : 9781800562905
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 152.97
Python Deep Learning
$49.99
Deep Learning with MXNet Cookbook
$49.99
The Deep Learning Architect's Handbook
$52.99
Total $ 152.97 Stars icon

Table of Contents

11 Chapters
Chapter 1: Up and Running with MXNet Chevron down icon Chevron up icon
Chapter 2: Working with MXNet and Visualizing Datasets – Gluon and DataLoader Chevron down icon Chevron up icon
Chapter 3: Solving Regression Problems Chevron down icon Chevron up icon
Chapter 4: Solving Classification Problems Chevron down icon Chevron up icon
Chapter 5: Analyzing Images with Computer Vision Chevron down icon Chevron up icon
Chapter 6: Understanding Text with Natural Language Processing Chevron down icon Chevron up icon
Chapter 7: Optimizing Models with Transfer Learning and Fine-Tuning Chevron down icon Chevron up icon
Chapter 8: Improving Training Performance with MXNet Chevron down icon Chevron up icon
Chapter 9: Improving Inference Performance with MXNet Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(1 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Carlos Feb 23, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I recently started this book and I can tell you it is great to learn about Computer Vision and NLP, with tons of code samples. I love "learn-by-building" books, instead of pure-theory ones. This one is a perfect balance.By the way, all these technologies and frameworks are similar among them, so this book is perfect to start on this AI field, as MXNet will not have any further updates. For me, this means a very stable environment, without constantly dealing with broken libs!
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.