Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Time Series Cookbook

You're reading from   Deep Learning for Time Series Cookbook Use PyTorch and Python recipes for forecasting, classification, and anomaly detection

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781805129233
Length 274 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Luís Roque Luís Roque
Author Profile Icon Luís Roque
Luís Roque
Vitor Cerqueira Vitor Cerqueira
Author Profile Icon Vitor Cerqueira
Vitor Cerqueira
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Getting Started with Time Series FREE CHAPTER 2. Chapter 2: Getting Started with PyTorch 3. Chapter 3: Univariate Time Series Forecasting 4. Chapter 4: Forecasting with PyTorch Lightning 5. Chapter 5: Global Forecasting Models 6. Chapter 6: Advanced Deep Learning Architectures for Time Series Forecasting 7. Chapter 7: Probabilistic Time Series Forecasting 8. Chapter 8: Deep Learning for Time Series Classification 9. Chapter 9: Deep Learning for Time Series Anomaly Detection 10. Index 11. Other Books You May Enjoy

Computing autocorrelation

This recipe guides you through the process of computing autocorrelation. Autocorrelation is a measure of the correlation between a time series and itself at different lags, and it is helpful to understand the structure of time series, specifically, to quantify how past values affect the future.

Getting ready

Correlation is a statistic that measures the linear relationship between two random variables. Autocorrelation extends this notion to time series data. In time series, the value observed in a given time step will be similar to the values observed before it. The autocorrelation function quantifies the linear relationship between a time series and a lagged version of itself. A lagged time series refers to a time series that is shifted over a number of periods.

How to do it…

We can compute the autocorrelation function using statsmodels:

from statsmodels.tsa.stattools import acf
acf_scores = acf(x=series_daily, nlags=365)

The inputs to the function are a time series and the number of lags to analyze. In this case, we compute autocorrelation up to 365 lags, a full year of data.

We can also use statsmodels to compute the partial autocorrelation function. This measure extends the autocorrelation by controlling for the correlation of the time series at shorter lags:

from statsmodels.tsa.stattools import pacf
pacf_scores = pacf(x=series_daily, nlags=365)

The statsmodels library also provides functions to plot the results of autocorrelation analysis:

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plot_acf(series_daily, lags=365)
plot_pacf(series_daily, lags=365)

How it works…

The following figure shows the autocorrelation of the daily solar radiation time series up to 365 lags.

Figure 1.4: Autocorrelation scores up to 365 lags. The oscillations indicate seasonality

Figure 1.4: Autocorrelation scores up to 365 lags. The oscillations indicate seasonality

The oscillations in this plot are due to the yearly seasonal pattern. The analysis of autocorrelation is a useful approach to detecting seasonality.

There’s more…

The autocorrelation at each seasonal lag is usually large and positive. Besides, sometimes autocorrelation decays slowly along the lags, which indicates the presence of a trend. You can learn more about this from the following URL: https://otexts.com/fpp3/components.html.

The partial autocorrelation function is an important tool for identifying the order of autoregressive models. The idea is to select the number of lags whose partial autocorrelation is significant.

You have been reading a chapter from
Deep Learning for Time Series Cookbook
Published in: Mar 2024
Publisher: Packt
ISBN-13: 9781805129233
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image