Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Build Your Own Programming Language

You're reading from   Build Your Own Programming Language A programmer's guide to designing compilers, interpreters, and DSLs for solving modern computing problems

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781800204805
Length 494 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Clinton  L. Jeffery Clinton L. Jeffery
Author Profile Icon Clinton L. Jeffery
Clinton L. Jeffery
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Section 1: Programming Language Frontends
2. Chapter 1: Why Build Another Programming Language? FREE CHAPTER 3. Chapter 2: Programming Language Design 4. Chapter 3: Scanning Source Code 5. Chapter 4: Parsing 6. Chapter 5: Syntax Trees 7. Section 2: Syntax Tree Traversals
8. Chapter 6: Symbol Tables 9. Chapter 7: Checking Base Types 10. Chapter 8: Checking Types on Arrays, Method Calls, and Structure Accesses 11. Chapter 9: Intermediate Code Generation 12. Chapter 10: Syntax Coloring in an IDE 13. Section 3: Code Generation and Runtime Systems
14. Chapter 11: Bytecode Interpreters 15. Chapter 12: Generating Bytecode 16. Chapter 13: Native Code Generation 17. Chapter 14: Implementing Operators and Built-In Functions 18. Chapter 15: Domain Control Structures 19. Chapter 16: Garbage Collection 20. Chapter 17: Final Thoughts 21. Section 4: Appendix
22. Assessments 23. Other Books You May Enjoy Appendix: Unicon Essentials

Chapter 11

  1. Complex instruction sets take more time and logic to decode and might make the implementation of the byte-code interpreter more difficult or less portable. On the other hand, the closer the final code comes to resembling intermediate code, the simpler the final code generation stage becomes.
  2. Implementing bytecode addresses using hardware addresses provides the best performance that you might hope for, but it may leave an implementation more vulnerable to memory safety and security issues. A bytecode interpreter that implements addresses using offsets within an array of bytes may find it has fewer memory problems; performance may or may not be a problem.
  3. Some bytecode interpreters may benefit from the ability to modify code at runtime. For example, bytecode that was linked using byte-offset information may be converted into code that uses pointers. Immutable code makes this type of self-modifying behavior more difficult or impossible.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image