Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence with Python

You're reading from   Artificial Intelligence with Python A Comprehensive Guide to Building Intelligent Apps for Python Beginners and Developers

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781786464392
Length 446 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Introduction to Artificial Intelligence FREE CHAPTER 2. Classification and Regression Using Supervised Learning 3. Predictive Analytics with Ensemble Learning 4. Detecting Patterns with Unsupervised Learning 5. Building Recommender Systems 6. Logic Programming 7. Heuristic Search Techniques 8. Genetic Algorithms 9. Building Games With Artificial Intelligence 10. Natural Language Processing 11. Probabilistic Reasoning for Sequential Data 12. Building A Speech Recognizer 13. Object Detection and Tracking 14. Artificial Neural Networks 15. Reinforcement Learning 16. Deep Learning with Convolutional Neural Networks

Finding optimal training parameters using grid search


When you are working with classifiers, you do not always know what the best parameters are. You cannot brute-force it by checking for all possible combinations manually. This is where grid search becomes useful. Grid search allows us to specify a range of values and the classifier will automatically run various configurations to figure out the best combination of parameters. Let's see how to do it.

Create a new Python file and import the following packages:

import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.metrics import classification_report 
from sklearn import cross_validation, grid_search 
from sklearn.ensemble import ExtraTreesClassifier 
from sklearn import cross_validation 
from sklearn.metrics import classification_report 
 
from utilities import visualize_classifier 

We will use the data available in data_random_forests.txt for analysis:

# Load input data 
input_file...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime