Introducing the CNN
In the field of machine learning, there is an enduring preference for developing structures in code that parallel biological structures. One of the most obvious examples is that of the MLP neural network, whose topology and learning processes are inspired by the neurons of the human brain.
This preference has turned out to be highly efficient; the availability of specialized, optimized biological structures that excel at specific sets of tasks gives us a wealth of templates and clues from which to design and create effective learning models.
The design of convolutional neural networks takes inspiration from the visual cortex—the area of the brain that processes visual input. The visual cortex has several specializations that enable it to effectively process visual data; it contains many receptor cells that detect light in overlapping regions of the visual field. All receptor cells are subject to the same convolution operation, which is to say that they all process...