Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
A Handbook of Mathematical Models with Python

You're reading from   A Handbook of Mathematical Models with Python Elevate your machine learning projects with NetworkX, PuLP, and linalg

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781804616703
Length 144 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ranja Sarkar Ranja Sarkar
Author Profile Icon Ranja Sarkar
Ranja Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1:Mathematical Modeling
2. Chapter 1: Introduction to Mathematical Modeling FREE CHAPTER 3. Chapter 2: Machine Learning vis-à-vis Mathematical Modeling 4. Part 2:Mathematical Tools
5. Chapter 3: Principal Component Analysis 6. Chapter 4: Gradient Descent 7. Chapter 5: Support Vector Machine 8. Chapter 6: Graph Theory 9. Chapter 7: Kalman Filter 10. Chapter 8: Markov Chain 11. Part 3:Mathematical Optimization
12. Chapter 9: Exploring Optimization Techniques 13. Chapter 10: Optimization Techniques for Machine Learning 14. Index 15. Other Books You May Enjoy

Principal Component Analysis

A well-known algorithm to extract features from high-dimensional data for consumption in machine learning (ML) models is Principal Component Analysis (PCA). In mathematical terms, dimension is the minimum number of coordinates required to specify a vector in space. A lot of computational power is needed to find the distance between two vectors in high-dimensional space and in such cases, dimension is considered a curse. An increase in dimension will result in high performance of the algorithm only to a certain extent and will drop beyond that. This is the curse of dimensionality, as shown in Figure 3.1, which impedes the achievement of efficiency for most ML algorithms. The variable columns or features in data represent dimensions of space and the rows represent the coordinates in that space. With the increasing dimension of data, sparsity increases and there is an exponentially increasing computational effort required to calculate distance and density...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime