Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistical Application Development with R and Python

You're reading from   Statistical Application Development with R and Python Develop applications using data processing, statistical models, and CART

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher
ISBN-13 9781788621199
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Data Characteristics FREE CHAPTER 2. Import/Export Data 3. Data Visualization 4. Exploratory Analysis 5. Statistical Inference 6. Linear Regression Analysis 7. Logistic Regression Model 8. Regression Models with Regularization 9. Classification and Regression Trees 10. CART and Beyond Index

Using utils and the foreign packages

Data is generally available in an external file. The types of external files are certainly varied and it is important to learn which of them may be imported into R. The probable spreadsheet files may exist in a comma separated variable (CSV) format, XLS or XLSX (Microsoft Excel) form, or ODS (OpenOffice/LibreOffice Calc) ones. There are more possible formats but we restrict our attention to these described previously. A snapshot of two files, Employ.dat and SCV.csv, in gedit and MS Excel are given in the following screenshot. The brief characteristics of the two files are summarized in the following list:

  • The first row lists the names of the variables of the dataset
  • Each observation begins on a new line
  • In the DAT file, the delimiter is a tab (\t), whereas for the CSV file, it is a comma (,)
  • All three columns of the DAT file are numeric in nature
  • The first five columns of the CSV file are numeric while the last column is character
  • Overall, both the files...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image