Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Natural Language Processing

You're reading from   Python Natural Language Processing Advanced machine learning and deep learning techniques for natural language processing

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787121423
Length 486 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jalaj Thanaki Jalaj Thanaki
Author Profile Icon Jalaj Thanaki
Jalaj Thanaki
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. Practical Understanding of a Corpus and Dataset 3. Understanding the Structure of a Sentences 4. Preprocessing 5. Feature Engineering and NLP Algorithms 6. Advanced Feature Engineering and NLP Algorithms 7. Rule-Based System for NLP 8. Machine Learning for NLP Problems 9. Deep Learning for NLU and NLG Problems 10. Advanced Tools 11. How to Improve Your NLP Skills 12. Installation Guide

Why do we need a corpus?

In any NLP application, we need data or corpus to building NLP tools and applications. A corpus is the most critical and basic building block of any NLP-related application. It provides us with quantitative data that is used to build NLP applications. We can also use some part of the data to test and challenge our ideas and intuitions about the language. Corpus plays a very big role in NLP applications. Challenges regarding creating a corpus for NLP applications are as follows:

  • Deciding the type of data we need in order to solve the problem statement
  • Availability of data
  • Quality of the data
  • Adequacy of the data in terms of amount

Now you may want to know the details of all the preceding questions; for that, I will take an example that can help you to understand all the previous points easily. Consider that you want to make an NLP tool that understands...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image