Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Next generation techniques to revolutionize computer vision, AI, speech and data analysis

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781786464453
Length 406 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning – An Introduction FREE CHAPTER 2. Neural Networks 3. Deep Learning Fundamentals 4. Unsupervised Feature Learning 5. Image Recognition 6. Recurrent Neural Networks and Language Models 7. Deep Learning for Board Games 8. Deep Learning for Computer Games 9. Anomaly Detection 10. Building a Production-Ready Intrusion Detection System Index

A supervised learning approach to games


The challenge in reinforcement learning is working out a good target for our network. We saw one approach to this in the last chapter, policy gradients. If we can ever turn a reinforcement learning task into a supervised task problem, it becomes a lot easier. So, if our aim is to build an AI agent that plays computer games, one thing we might try is to look at how humans play and get our agent to learn from them. We can make a recording of an expert human player playing a game, keeping track of both the screen image and the buttons the player is pressing.

As we saw in the chapter on computer vision, deep neural networks can identify patterns from images, so we can train a network that has the screen as input and the buttons the human pressed in each frame as the targets. This is similar to how AlphaGo was pretrained in the last chapter. This was tried on a range of complex 3D games, such as Super Smash Bros and Mario Tennis. Convolutional networks were...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime