Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Cleaning Cookbook

You're reading from   Python Data Cleaning Cookbook Modern techniques and Python tools to detect and remove dirty data and extract key insights

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781800565661
Length 436 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Michael B Walker Michael B Walker
Author Profile Icon Michael B Walker
Michael B Walker
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Anticipating Data Cleaning Issues when Importing Tabular Data into pandas 2. Chapter 2: Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas FREE CHAPTER 3. Chapter 3: Taking the Measure of Your Data 4. Chapter 4: Identifying Missing Values and Outliers in Subsets of Data 5. Chapter 5: Using Visualizations for the Identification of Unexpected Values 6. Chapter 6: Cleaning and Exploring Data with Series Operations 7. Chapter 7: Fixing Messy Data when Aggregating 8. Chapter 8: Addressing Data Issues When Combining DataFrames 9. Chapter 9: Tidying and Reshaping Data 10. Chapter 10: User-Defined Functions and Classes to Automate Data Cleaning 11. Other Books You May Enjoy

Functions for identifying outliers and unexpected values

If I had to pick one data cleaning area where I find reusable code most beneficial, it would be in the identification of outliers and unexpected values. This is because our prior assumptions often lead us to the central tendency of a distribution, rather than to the extremes. Quickly – think of a cat. Unless you were thinking about a particular cat in your life, an image of a generic feline between 8 and 10 pounds probably came to mind; not one that is 6 pounds or 22 pounds.

We often need to be more deliberate to elevate extreme values to consciousness. This is where having a standard set of diagnostic functions to run on our data is very helpful. We can run these functions even if nothing in particular triggers us to run them. This recipe provides examples of functions that we can use regularly to identify outliers and unexpected values.

Getting ready

We will create two files in this recipe, one with the functions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime