Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Production-Ready Applied Deep Learning

You're reading from   Production-Ready Applied Deep Learning Learn how to construct and deploy complex models in PyTorch and TensorFlow deep learning frameworks

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781803243665
Length 322 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (3):
Arrow left icon
Lenin Mookiah Lenin Mookiah
Author Profile Icon Lenin Mookiah
Lenin Mookiah
Tomasz Palczewski Tomasz Palczewski
Author Profile Icon Tomasz Palczewski
Tomasz Palczewski
Jaejun (Brandon) Lee Jaejun (Brandon) Lee
Author Profile Icon Jaejun (Brandon) Lee
Jaejun (Brandon) Lee
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 – Building a Minimum Viable Product
2. Chapter 1: Effective Planning of Deep Learning-Driven Projects FREE CHAPTER 3. Chapter 2: Data Preparation for Deep Learning Projects 4. Chapter 3: Developing a Powerful Deep Learning Model 5. Chapter 4: Experiment Tracking, Model Management, and Dataset Versioning 6. Part 2 – Building a Fully Featured Product
7. Chapter 5: Data Preparation in the Cloud 8. Chapter 6: Efficient Model Training 9. Chapter 7: Revealing the Secret of Deep Learning Models 10. Part 3 – Deployment and Maintenance
11. Chapter 8: Simplifying Deep Learning Model Deployment 12. Chapter 9: Scaling a Deep Learning Pipeline 13. Chapter 10: Improving Inference Efficiency 14. Chapter 11: Deep Learning on Mobile Devices 15. Chapter 12: Monitoring Deep Learning Endpoints in Production 16. Chapter 13: Reviewing the Completed Deep Learning Project 17. Index 18. Other Books You May Enjoy

Knowledge distillation – obtaining a smaller network by mimicking the prediction

The idea of knowledge distillation was first introduced in 2015 by Hinton et al. in their publication titled Distilling the Knowledge in a Neural Network. In classification problems, Softmax activation is often used as the last operation of the network to represent the confidence for each class as a probability. Since the class with the highest probability is used for the final prediction, the probabilities for the other classes have been considered unimportant. However, the authors believe that they still consist of meaningful information representing how the model interprets the input. For example, if two classes constantly report similar probabilities for multiple samples, the two classes likely have many characteristics in common that makes the distinction between the two difficult. Such information becomes more fruitful when the network is deep because it can extract more information from the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image