Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Predictive Analytics

You're reading from   Practical Predictive Analytics Analyse current and historical data to predict future trends using R, Spark, and more

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781785886188
Length 576 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ralph Winters Ralph Winters
Author Profile Icon Ralph Winters
Ralph Winters
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Predictive Analytics FREE CHAPTER 2. The Modeling Process 3. Inputting and Exploring Data 4. Introduction to Regression Algorithms 5. Introduction to Decision Trees, Clustering, and SVM 6. Using Survival Analysis to Predict and Analyze Customer Churn 7. Using Market Basket Analysis as a Recommender Engine 8. Exploring Health Care Enrollment Data as a Time Series 9. Introduction to Spark Using R 10. Exploring Large Datasets Using Spark 11. Spark Machine Learning - Regression and Cluster Models 12. Spark Models – Rule-Based Learning

The sample market basket


Each transaction numbered 1-10 listed previously represents a basket of items purchased by a shopper. These are typically all items that are associated with a particular transaction or invoice. Each basket is enclosed within braces {}, and is referred to as an itemset. An itemset is a group of items that occur together.

Market basket algorithms construct rules in the form of:

Itemset{x1,x2,x3 ...} --> Itemset{y1,y2,y3...}. 

This notation states that buyers who have purchased items on the left-hand side of the formula (lhs) have a propensity to purchase items on the right-hand side (rhs). The association is stated using the à symbol, which can be interpreted as implies.

Note

The lhs of the notation is also known as the antecedent, and the rhs is known as the consequence. If nothing appears on either the left-hand side or right-hand side there is no specific association rule for those items; however, it also means that those items have appeared in the basket.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image