Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Java Machine Learning

You're reading from   Mastering Java Machine Learning A Java developer's guide to implementing machine learning and big data architectures

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785880513
Length 556 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Uday Kamath Uday Kamath
Author Profile Icon Uday Kamath
Uday Kamath
Krishna Choppella Krishna Choppella
Author Profile Icon Krishna Choppella
Krishna Choppella
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Machine Learning Review FREE CHAPTER 2. Practical Approach to Real-World Supervised Learning 3. Unsupervised Machine Learning Techniques 4. Semi-Supervised and Active Learning 5. Real-Time Stream Machine Learning 6. Probabilistic Graph Modeling 7. Deep Learning 8. Text Mining and Natural Language Processing 9. Big Data Machine Learning – The Final Frontier A. Linear Algebra B. Probability Index

Feature relevance analysis and dimensionality reduction


The goal of feature relevance and selection is to find the features that are discriminating with respect to the target variable and help reduce the dimensions of the data [1,2,3]. This improves the model performance mainly by ameliorating the effects of the curse of dimensionality and by removing noise due to irrelevant features. By carefully evaluating models on the validation set with and without features removed, we can see the impact of feature relevance. Since the exhaustive search for k features involves 2k – 1 sets (consider all combinations of k features where each feature is either retained or removed, disregarding the degenerate case where none is present) the corresponding number of models that have to be evaluated can become prohibitive, so some form of heuristic search techniques are needed. The most common of these techniques are described next.

Feature search techniques

Some of the very common search techniques employed...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime