Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Graphics Programming with Vulkan

You're reading from   Mastering Graphics Programming with Vulkan Develop a modern rendering engine from first principles to state-of-the-art techniques

Arrow left icon
Product type Paperback
Published in Feb 2023
Publisher Packt
ISBN-13 9781803244792
Length 382 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Gabriel Sassone Gabriel Sassone
Author Profile Icon Gabriel Sassone
Gabriel Sassone
Marco Castorina Marco Castorina
Author Profile Icon Marco Castorina
Marco Castorina
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Foundations of a Modern Rendering Engine
2. Chapter 1: Introducing the Raptor Engine and Hydra FREE CHAPTER 3. Chapter 2: Improving Resources Management 4. Chapter 3: Unlocking Multi-Threading 5. Chapter 4: Implementing a Frame Graph 6. Chapter 5: Unlocking Async Compute 7. Part 2: GPU-Driven Rendering
8. Chapter 6: GPU-Driven Rendering 9. Chapter 7: Rendering Many Lights with Clustered Deferred Rendering 10. Chapter 8: Adding Shadows Using Mesh Shaders 11. Chapter 9: Implementing Variable Rate Shading 12. Chapter 10: Adding Volumetric Fog 13. Part 3: Advanced Rendering Techniques
14. Chapter 11: Temporal Anti-Aliasing 15. Chapter 12: Getting Started with Ray Tracing 16. Chapter 13: Revisiting Shadows with Ray Tracing 17. Chapter 14: Adding Dynamic Diffuse Global Illumination with Ray Tracing 18. Chapter 15: Adding Reflections with Ray Tracing 19. Index 20. Other Books You May Enjoy

Implementing a denoiser

To make the output of our reflection pass usable for lighting computations, we need to pass it through a denoiser. We have implemented an algorithm called SVGF, which has been developed to reconstruct color data for path tracing.

SVGF consists of three main passes:

  1. First, we compute the integrated color and moments for luminance. This is the temporal step of the algorithm. We combine the data from the previous frame with the result of the current frame.
  2. Next, we compute an estimate for variance. This is done using the first and second moment values we computed in the first step.
  3. Finally, we perform five passes of a wavelet filter. This is the spatial step of the algorithm. At each iteration, we apply a 5x5 filter to reduce the remaining noise as much as possible.

Now that you have an idea of the main algorithm, we can proceed with the code details. We start by computing the moments for the current frame:

float u_1 = luminance( reflections_color...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime