Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Automation with TPOT

You're reading from   Machine Learning Automation with TPOT Build, validate, and deploy fully automated machine learning models with Python

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781800567887
Length 270 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dario Radečić Dario Radečić
Author Profile Icon Dario Radečić
Dario Radečić
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Introducing Machine Learning and the Idea of Automation
2. Chapter 1: Machine Learning and the Idea of Automation FREE CHAPTER 3. Section 2: TPOT – Practical Classification and Regression
4. Chapter 2: Deep Dive into TPOT 5. Chapter 3: Exploring Regression with TPOT 6. Chapter 4: Exploring Classification with TPOT 7. Chapter 5: Parallel Training with TPOT and Dask 8. Section 3: Advanced Examples and Neural Networks in TPOT
9. Chapter 6: Getting Started with Deep Learning: Crash Course in Neural Networks 10. Chapter 7: Neural Network Classifier with TPOT 11. Chapter 8: TPOT Model Deployment 12. Chapter 9: Using the Deployed TPOT Model in Production 13. Other Books You May Enjoy

Introducing artificial neural networks

The fundamental building block of an artificial neural network is the neuron. By itself, a single neuron is useless, but it can have strong predictive power when combined into a more complex network.

If you can't reason why, think about your brain and how it works for a minute. Just like artificial neural networks, it is also made from millions of neurons, which function only when there's communication between them. Since artificial neural networks try to imitate the human brain, they need to somehow replicate neurons in the brain and connections between them (weights). This association will be made less abstract throughout this section.

Today, artificial neural networks can be used to tackle any problem that regular machine learning algorithms can. In a nutshell, if you can solve a problem with linear or logistic regression, you can solve it with neural networks.

Before we can explore the complexity and inner workings of an...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime