Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Algorithms

You're reading from   Machine Learning Algorithms A reference guide to popular algorithms for data science and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785889622
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. A Gentle Introduction to Machine Learning FREE CHAPTER 2. Important Elements in Machine Learning 3. Feature Selection and Feature Engineering 4. Linear Regression 5. Logistic Regression 6. Naive Bayes 7. Support Vector Machines 8. Decision Trees and Ensemble Learning 9. Clustering Fundamentals 10. Hierarchical Clustering 11. Introduction to Recommendation Systems 12. Introduction to Natural Language Processing 13. Topic Modeling and Sentiment Analysis in NLP 14. A Brief Introduction to Deep Learning and TensorFlow 15. Creating a Machine Learning Architecture

Data scaling and normalization


A generic dataset (we assume here that it is always numerical) is made up of different values which can be drawn from different distributions, having different scales and, sometimes, there are also outliers. A machine learning algorithm isn't naturally able to distinguish among these various situations, and therefore, it's always preferable to standardize datasets before processing them. A very common problem derives from having a non-zero mean and a variance greater than one. In the following figure, there's a comparison between a raw dataset and the same dataset scaled and centered:

This result can be achieved using the StandardScaler class:

from sklearn.preprocessing import StandardScaler

>>> ss = StandardScaler()
>>> scaled_data = ss.fit_transform(data)

It's possible to specify if the scaling process must include both mean and standard deviation using the parameters with_mean=True/False and with_std=True/False (by default they're both active...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime