In this chapter, we introduced the k-means algorithm, which is based on the idea of defining (randomly or according to some criteria) k centroids that represent the clusters and optimize their position so that the sum of squared distances for every point in each cluster and the centroid is minimum. As the distance is a radial function, k-means assumes clusters to be convex and cannot solve problems where the shapes have deep concavities (like the half-moon problem).
In order to solve such situations, we presented two alternatives. The first one is called DBSCAN and is a simple algorithm that analyzes the difference between points surrounded by other samples and boundary samples. In this way, it can easily determine high-density areas (which become clusters) and low-density spaces among them. There are no assumptions about the shape or the number of clusters, so it...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine