Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from  Linux Kernel Programming

Product type Book
Published in Mar 2021
Publisher Packt
ISBN-13 9781789953435
Pages 754 pages
Edition 1st Edition
Languages
Author (1):
Kaiwan N. Billimoria Kaiwan N. Billimoria
Profile icon Kaiwan N. Billimoria
Toc

Table of Contents (19) Chapters close

Preface 1. Section 1: The Basics
2. Kernel Workspace Setup 3. Building the 5.x Linux Kernel from Source - Part 1 4. Building the 5.x Linux Kernel from Source - Part 2 5. Writing Your First Kernel Module - LKMs Part 1 6. Writing Your First Kernel Module - LKMs Part 2 7. Section 2: Understanding and Working with the Kernel
8. Kernel Internals Essentials - Processes and Threads 9. Memory Management Internals - Essentials 10. Kernel Memory Allocation for Module Authors - Part 1 11. Kernel Memory Allocation for Module Authors - Part 2 12. The CPU Scheduler - Part 1 13. The CPU Scheduler - Part 2 14. Section 3: Delving Deeper
15. Kernel Synchronization - Part 1 16. Kernel Synchronization - Part 2 17. About Packt 18. Other Books You May Enjoy

Mutex lock  via [un]interruptible sleep?

As usual, there's more to the mutex than what we've seen so far. You already know that a Linux process (or thread) cycles through various states of a state machine. On Linux, sleeping has two discrete states an interruptible sleep and an uninterruptible sleep. A process (or thread) in an interruptible sleep is sensitive, which means it will respond to user space signals, whereas a task in an uninterruptible sleep is not sensitive to user signals.

In a human-interactive application with an underlying driver, as a general rule of thumb, you should typically put a process into an interruptible sleep (while it's blocking upon the lock), thus leaving it up to the end user as to whether to abort the application by pressing Ctrl + C (or some such mechanism involving signals). There is a design rule that's often followed on Unix-like systems: provide mechanism, not&...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime