Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java Data Analysis

You're reading from   Java Data Analysis Data mining, big data analysis, NoSQL, and data visualization

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787285651
Length 412 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
John R. Hubbard John R. Hubbard
Author Profile Icon John R. Hubbard
John R. Hubbard
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Data Analysis FREE CHAPTER 2. Data Preprocessing 3. Data Visualization 4. Statistics 5. Relational Databases 6. Regression Analysis 7. Classification Analysis 8. Cluster Analysis 9. Recommender Systems 10. NoSQL Databases 11. Big Data Analysis with Java A. Java Tools Index

Hierarchical clustering


Of the several clustering algorithms that we will examine in this chapter, hierarchical clustering is probably the simplest. The trade-off is that it works well only with small datasets in Euclidean space.

The general setup is that we have a dataset S of m points in which we want to partition into a given number k of clusters C1, C2,..., Ck, where within each cluster the points are relatively close together. (B. J. Frey and D. Dueck, Clustering by Passing Messages Between Data Points Science 315, Feb 16, 2007 http://science.sciencemag.org/content/315/5814/972).

Here is the algorithm:

  1. Create a singleton cluster for each of the m data points.

  2. Repeat m – k times:

    • Find the two clusters whose centroids are closest

    • Replace those two clusters with a new cluster that contains their points

The centroid of a cluster is the point whose coordinates are the averages of the corresponding coordinates of the cluster points. For example, the centroid of the cluster C = {(2, 4), (3, 5),...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image