Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On System Programming with Linux

You're reading from   Hands-On System Programming with Linux Explore Linux system programming interfaces, theory, and practice

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788998475
Length 794 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Tigran Aivazian Tigran Aivazian
Author Profile Icon Tigran Aivazian
Tigran Aivazian
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Linux System Architecture 2. Virtual Memory FREE CHAPTER 3. Resource Limits 4. Dynamic Memory Allocation 5. Linux Memory Issues 6. Debugging Tools for Memory Issues 7. Process Credentials 8. Process Capabilities 9. Process Execution 10. Process Creation 11. Signaling - Part I 12. Signaling - Part II 13. Timers 14. Multithreading with Pthreads Part I - Essentials 15. Multithreading with Pthreads Part II - Synchronization 16. Multithreading with Pthreads Part III 17. CPU Scheduling on Linux 18. Advanced File I/O 19. Troubleshooting and Best Practices 20. Other Books You May Enjoy

Gracefully handling process crashes

A bug in the application that caused a crash at runtime? My God, how is this possible?

Unfortunately, to the well-heeled software veteran, though, this is not a big surprise. Bugs exist; they can hide really well, for years, sometimes; one day, they come out and—bang!the process crashes.

Here, our intention is not to discuss debugging techniques or tools (let's save that for another book perhaps, shall we?); instead, it's this key point: if our application process does crash, can we do something? Certainly: in the previous chapter, we have learned in detail how we can trap signals. Why not design our application such that we trap the typical fatal signals—the SIGBUS, SIGFPE, SIGILL, and SIGSEGV—and, in their signal handler(s), perform useful tasks such as these:

  • Perform critical application cleanup&...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime