Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Natural Language Processing with Python

You're reading from   Hands-On Natural Language Processing with Python A practical guide to applying deep learning architectures to your NLP applications

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781789139495
Length 312 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (5):
Arrow left icon
Rajalingappaa Shanmugamani Rajalingappaa Shanmugamani
Author Profile Icon Rajalingappaa Shanmugamani
Rajalingappaa Shanmugamani
Chaitanya Joshi Chaitanya Joshi
Author Profile Icon Chaitanya Joshi
Chaitanya Joshi
Auguste Byiringiro Auguste Byiringiro
Author Profile Icon Auguste Byiringiro
Auguste Byiringiro
Rajesh Arumugam Rajesh Arumugam
Author Profile Icon Rajesh Arumugam
Rajesh Arumugam
Karthik Muthuswamy Karthik Muthuswamy
Author Profile Icon Karthik Muthuswamy
Karthik Muthuswamy
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started 2. Text Classification and POS Tagging Using NLTK FREE CHAPTER 3. Deep Learning and TensorFlow 4. Semantic Embedding Using Shallow Models 5. Text Classification Using LSTM 6. Searching and DeDuplicating Using CNNs 7. Named Entity Recognition Using Character LSTM 8. Text Generation and Summarization Using GRUs 9. Question-Answering and Chatbots Using Memory Networks 10. Machine Translation Using the Attention-Based Model 11. Speech Recognition Using DeepSpeech 12. Text-to-Speech Using Tacotron 13. Deploying Trained Models 14. Other Books You May Enjoy

What this book covers

Chapter 1, Getting Started, explores the basic concepts of NLP and the various problems it tries to solve. We also look at some of the real-world applications to give the reader the feeling of the wide range of applications that leverage NLP.

Chapter 2, Text Classification and POS Tagging Using NLTK, introduces the popular NLTK Python library. We will be using NLTK to describe basic NLP tasks, such as tokenizing, stemming, tagging, and classic text classification. We also explore POS tagging with NLTK. We provide the reader with the tools and techniques necessary to prepare data for input into deep learning models.

Chapter 3, Deep Learning and TensorFlow, introduces the basic concepts of deep learning. This chapter will also help the reader to set up the environment and tools such as TensorFlow. At the end of the chapter, the reader will get an understanding of basic deep learning concepts, such as CNN, RNN, LSTM, attention-based models, and problems in NLP.

Chapter 4, Semantic Embedding Using Shallow Models, explores how to identify semantic relationships between words in a document, and in the process, we obtain a vector representation for words in a corpus. The chapter describes developing word embedding models, such as CBOW using neural networks. It also describes techniques for developing neural network models to obtain document vectors. At the end of this chapter, the reader will get familiar with training embeddings for word, sentence, and document; and visualize simple networks.

Chapter 5, Text Classification Using LSTM, discusses various approaches for classifying text, a specific application of which is to classify sentiments of words or phrases in a document. The chapter introduces the problem of text classification. Following this, we describe techniques for developing deep learning models using CNNs and LSTMs. The chapter also explains transfer learning for text classification using pretrained word embeddings. At the end, the reader will get familiar with implementing deep learning models for sentiment classification, spam detection, and using pretrained word embeddings for his/her classification task.

Chapter 6, Searching and Deduplicating Using CNNs, covers the problems of searching, matching and deduplicating documents and approaches used in solving them. The chapter describes developing deep learning models for searching text in a corpus. At the end of this chapter, you will learn to implement a CNN-based deep learning model for searching and deduplicating text.

Chapter 7, Named Entity Recognition Using Character LSTM, describes methods and approaches to perform Named Entity Recognition (NER), a sub-task of information extraction, to locate and classify entities in text of a document. The chapter introduces the problem of NER and the applications where it can be used. We then explain the implementation of a deep learning model using character-based LSTM for identifying named entities trained using labeled datasets.

Chapter 8, Text Generation and Summarization Using GRUs, covers the methods used for the task of generating text, an extension of which can be used to create summaries from text data. We then explain the implementation of a deep learning model for generating text. This is followed by a description of implementing GRU-based deep learning models to summarize text. At the end of this chapter, the reader will learn the techniques of implementing deep learning models for text generation and summarization.

Chapter 9, Question-Answering and Chatbots Using Memory Networks, describes how to train a deep learning model to answer questions and extend it to build a chatbot. The chapter introduces the problem of question answering and the approaches used in building an answering engine using deep learning models. We then describe how to leverage a question-answering engine to build a chatbot capable of answering questions like a conversation. At the end of this chapter, you will be able to implement an interactive chatbot.

Chapter 10, Machine Translation Using Attention-Based Models, covers various methods for translating text from one language to another, without the need to learn the grammar structure of either language. The chapter introduces traditional machine translation approaches, such as Hidden Markov Model (HMM) based methods. We then explain the implementation of an encoder-decoder model with attention for translating text from French to the English language. At the end of this chapter, the reader will be able to implement deep learning models for translating text.

Chapter 11, Speech Recognition Using Deep Speech, describes the problem of converting voice to text, as a beginning of a conversational interface. The chapter begins with feature extraction from speech data. This is followed by a brief introduction of the deep speech architecture. We then explain the detailed implementation of the Deep Speech architecture to transcribe speech to text. At the end of this chapter, the reader will be equipped with the knowledge to implement a speech-to-text deep learning model.

Chapter 12, Text to Speech Using Tacotron, describes the problem of converting text to speech. The chapter describes the implementation of the Tacotron model to convert text to voice. At the end, the reader will get familiar with the implementation of a text-to-speech model based on the Tacotron architecture.

Chapter 13, Deploying Trained Models, is the concluding chapter and describes model deployments in various cloud and mobile platforms.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image