Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Enterprise Application Development with Python

You're reading from   Hands-On Enterprise Application Development with Python Design data-intensive Application with Python 3

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789532364
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Saurabh Badhwar Saurabh Badhwar
Author Profile Icon Saurabh Badhwar
Saurabh Badhwar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Using Python for Enterprise FREE CHAPTER 2. Design Patterns – Making a Choice 3. Building for Large-Scale Database Operations 4. Dealing with Concurrency 5. Building for Large-Scale Request Handling 6. Example – Building BugZot 7. Building Optimized Frontends 8. Writing Testable Code 9. Profiling Applications for Performance 10. Securing Your Application 11. Taking the Microservices Approach 12. Testing and Tracing in Microservices 13. Going Serverless 14. Deploying to the Cloud 15. Enterprise Application Integration and its Patterns 16. Microservices and Enterprise Application Integration 17. Assessment 18. Other Books You May Enjoy

Concurrent programming with Python

Python provides a number of ways through which parallelism or concurrency can be achieved. All of these methods have their own pros and cons, and differ fundamentally in terms of how they are implemented, and a choice needs to be made about which method to use when, keeping the use case in mind.

One of the methods provided by Python for implementing concurrency is performed at the thread level by allowing the application to launch multiple threads, each executing a job. These threads provide an easy-to-use concurrency mechanism and execute inside a single Python interpreter process, and hence are lightweight.

Another mechanism for achieving parallelism is through the use of multiple processes in place of multiple threads. With this approach, every process performs a separate task inside its own separate Python interpreter process. This approach...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image