XGBoost is a boosting library with parallel, GPU, and distributed execution support. It has helped many machine learning engineers and data scientists to win Kaggle.com competitions. Furthermore, it provides an interface that resembles scikit-learn's interface. Thus, someone already familiar with the interface is able to quickly utilize the library. Additionally, it allows for very fine control over the ensemble's creation. It supports monotonic constraints (that is, the predicted value should only increase or decrease, relative to a specific feature), as well as feature interaction constraints (for example, if a decision tree creates a node that splits by age, it should not use sex as a splitting feature for all children of that specific node). Finally, it adds an additional regularization parameter, gamma, which further reduces the overfitting capabilities...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine