Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Design Patterns with C++

You're reading from   Hands-On Design Patterns with C++ Solve common C++ problems with modern design patterns and build robust applications

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788832564
Length 512 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Fedor G. Pikus Fedor G. Pikus
Author Profile Icon Fedor G. Pikus
Fedor G. Pikus
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. An Introduction to Inheritance and Polymorphism FREE CHAPTER 2. Class and Function Templates 3. Memory Ownership 4. Swap - From Simple to Subtle 5. A Comprehensive Look at RAII 6. Understanding Type Erasure 7. SFINAE and Overload Resolution Management 8. The Curiously Recurring Template Pattern 9. Named Arguments and Method Chaining 10. Local Buffer Optimization 11. ScopeGuard 12. Friend Factory 13. Virtual Constructors and Factories 14. The Template Method Pattern and the Non-Virtual Idiom 15. Singleton - A Classic OOP Pattern 16. Policy-Based Design 17. Adapters and Decorators 18. The Visitor Pattern and Multiple Dispatch 19. Assessments 20. Other Books You May Enjoy

Multiple inheritance

In C++, a class can be derived from several base classes. Going back to our birds, let's make an observation—while flying birds have a lot in common with each other, they also have something in common with other flying animals, specifically, the ability to fly. Since flight isn't limited to birds, we may want to move the data and the algorithms related to processing flight into a separate base class. But there's also no denying that an eagle is a bird. We could express this relation if we used two base classes to construct the Eagle class:

class Eagle : public Bird, public FlyingAnimal { ... };

In this case, the inheritance from both base classes is public, which means that the derived class inherits both interfaces and must fulfill two separate contracts. What happens if both interfaces define a method with the same name? If this method isn't virtual, then an attempt to invoke it on the derived class is ambiguous, and the program doesn't compile. If the method is virtual and the derived class has an override for it, then there's no ambiguity since the method of the derived class is called. Also, Eagle is now both Bird and FlyingAnimal:

Eagle* e = new Eagle;
Bird* b = e;
FlyingAnimal* f = e;

Both conversions from the derived class into the base class pointer are allowed. The reverse conversions must be made explicitly using a static or a dynamic cast. There's another interesting conversion—if we have a pointer to a FlyingAnimal class that's also a Bird class, can we cast from one to the other? Yes, we can with a dynamic cast:

Bird* b = new Eagle;    // Also a FlyingAnimal
FlyingAnimal* f = dynamic_cast<FlyingAnimal*>(b);

When used in this context, the dynamic cast is sometimes called a cross-cast—we aren't casting up or down the hierarchy (between derived and based classes) but across the hierarchy—between the classes on different branches of the hierarchy tree.

Multiple inheritance is often maligned and disfavored in C++. Much of this advice is outdated and stems from the time when compilers implemented multiple inheritance poorly and inefficiently. Today, with modern compilers, this isn't a concern. It's often said that multiple inheritance makes the class hierarchy harder to understand and reason about. Perhaps it would be more accurate to say that it's harder to design a good multiple inheritance hierarchy that accurately reflects the relations between different properties, and that a poorly designed hierarchy is difficult to understand and reason about.

These concerns mostly apply to hierarchies that use public inheritance. Multiple inheritance can be private as well. There's even less reason to use multiple private inheritance instead of composition than there was to use single private inheritance. However, the empty base optimization can be done on multiple empty base classes and remains a valid reason to use private inheritance, if it applies:

class Empty1 {};
class Empty2 {};
class Derived : private Empty1, private Empty2 {
int i;
}; // sizeof(Derived) == 4
class Composed {
int i;
Empty1 e1;
Empty2 e2;
}; // sizeof(Composed) == 8

Multiple inheritance can be particularly effective when the derived class represents a system that combines several unrelated, non-overlapping attributes. We'll encounter such cases throughout this book when we explore various design patterns and their C++ representations.

You have been reading a chapter from
Hands-On Design Patterns with C++
Published in: Jan 2019
Publisher: Packt
ISBN-13: 9781788832564
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image