An important point I want to make is that the results of an A/B test, even when you measure them in a principled manner using p-values, is not gospel. There are many effects that can actually skew the results of your experiment and cause you to make the wrong decision. Let's go through a few of these and let you know how to watch out for them. Let's talk about some gotchas with A/B tests.
It sounds really official to say there's a p-value of 1 percent, meaning there's only a 1 percent chance that a given experiment was due to spurious results or random variation, but it's still not the be-all and end-all of measuring success for an experiment. There are many things that can skew or conflate your results that you need to be aware of. So, even if you see a p-value that looks very encouraging, your experiment could still be lying to you,...