Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Kubernetes, Second Edition

You're reading from   Getting Started with Kubernetes, Second Edition Orchestrate and manage large-scale Docker deployments

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781787283367
Length 286 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Jonathan Baier Jonathan Baier
Author Profile Icon Jonathan Baier
Jonathan Baier
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction to Kubernetes FREE CHAPTER 2. Pods, Services, Replication Controllers, and Labels 3. Networking, Load Balancers, and Ingress 4. Updates, Gradual Rollouts, and Autoscaling 5. Deployments, Jobs, and DaemonSets 6. Storage and Running Stateful Applications 7. Continuous Delivery 8. Monitoring and Logging 9. Cluster Federation 10. Container Security 11. Extending Kubernetes with OCP, CoreOS, and Tectonic 12. Towards Production Ready

Advanced services


Let's explore the IP strategy as it relates to services and communication between containers. If you recall, in the Services section, Chapter 2, Pods, Services, Replication Controllers, and Labels, you learned that Kubernetes is using kube-proxy to determine the proper pod IP address and port serving each request. Behind the scenes, kube-proxy is actually using virtual IPs and iptables to make all this magic work.

Kube-proxy now has two modes—userspace and iptables. As of now, 1.2 iptables is the default mode. In both modes, kube-proxy is running on every host. Its first duty is to monitor the API from the Kubernetes master. Any updates to services will trigger an update to iptables from kube-proxy. For example, when a new service is created, a virtual IP address is chosen and a rule in iptables is set, which will direct its traffic to kube-proxy via a random port. Thus, we now have a way to capture service-destined traffic on this node. Since kube-proxy is running on all...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image