Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Essential PySpark for Scalable Data Analytics

You're reading from   Essential PySpark for Scalable Data Analytics A beginner's guide to harnessing the power and ease of PySpark 3

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781800568877
Length 322 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sreeram Nudurupati Sreeram Nudurupati
Author Profile Icon Sreeram Nudurupati
Sreeram Nudurupati
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Data Engineering
2. Chapter 1: Distributed Computing Primer FREE CHAPTER 3. Chapter 2: Data Ingestion 4. Chapter 3: Data Cleansing and Integration 5. Chapter 4: Real-Time Data Analytics 6. Section 2: Data Science
7. Chapter 5: Scalable Machine Learning with PySpark 8. Chapter 6: Feature Engineering – Extraction, Transformation, and Selection 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Unsupervised Machine Learning 11. Chapter 9: Machine Learning Life Cycle Management 12. Chapter 10: Scaling Out Single-Node Machine Learning Using PySpark 13. Section 3: Data Analysis
14. Chapter 11: Data Visualization with PySpark 15. Chapter 12: Spark SQL Primer 16. Chapter 13: Integrating External Tools with Spark SQL 17. Chapter 14: The Data Lakehouse 18. Other Books You May Enjoy

Stream processing engines

A stream processing engine is the most critical component of any real-time data analytics system. The role of the stream processing engine is to continuously process events from a streaming data source and ingest them into a streaming data sink. The stream processing engine can process events as they arrive in a real real-time fashion or group a subset of events into a small batch and process one micro-batch at a time in

a near real-time manner. The choice of the engine greatly depends on the type of use case and the processing latency requirements. Some examples of modern streaming engines include Apache Storm, Apache Spark, Apache Flink, and Kafka Streams.

Apache Spark comes with a stream processing engine called Structured Streaming, which is based on Spark's SQL engine and DataFrame APIs. Structured Streaming uses the micro-batch style of processing and treats each incoming micro-batch as a small Spark DataFrame. It applies DataFrame operations...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image