Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Essential Guide to LLMOps

You're reading from   Essential Guide to LLMOps Implementing effective strategies for Large Language Models in deployment and continuous improvement

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835887509
Length 190 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ryan Doan Ryan Doan
Author Profile Icon Ryan Doan
Ryan Doan
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Part 1: Foundations of LLMOps FREE CHAPTER
2. Chapter 1: Introduction to LLMs and LLMOps 3. Chapter 2: Reviewing LLMOps Components 4. Part 2: Tools and Strategies in LLMOps
5. Chapter 3: Processing Data in LLMOps Tools 6. Chapter 4: Developing Models via LLMOps 7. Chapter 5: LLMOps Review and Compliance 8. Part 3: Advanced LLMOps Applications and Future Outlook
9. Chapter 6: LLMOps Strategies for Inference, Serving, and Scalability 10. Chapter 7: LLMOps Monitoring and Continuous Improvement 11. Chapter 8: The Future of LLMOps and Emerging Technologies 12. Index 13. Other Books You May Enjoy

Preparing data

Efficiently handling large datasets is paramount. One of the most effective ways to manage and process such data is through parallel programming environments. Apache Spark stands out as a powerful tool for this purpose, offering robust capabilities for data processing, analysis, and machine learning. Specifically, PySpark, the Python API for Spark, simplifies these tasks with its easy-to-use interface. This section explores how to import collected data, which is stored in Parquet format, into PySpark for parallel processing in an effort to fine-tune the LLM.

PySpark is an interface for Apache Spark, which allows for distributed data processing across clusters. Spark’s in-memory computation capabilities make it significantly faster for certain operations compared to other big data technologies. Parquet, on the other hand, is a columnar storage file format that is optimized for use with big data processing frameworks. It offers efficient data compression and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image