Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks and build intelligent systems with Python

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788831109
Length 484 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. A First Look at TensorFlow 3. Feed-Forward Neural Networks with TensorFlow 4. Convolutional Neural Networks 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. Heterogeneous and Distributed Computing 8. Advanced TensorFlow Programming 9. Recommendation Systems Using Factorization Machines 10. Reinforcement Learning Other Books You May Enjoy Index

Factorization machines for recommendation systems


In this section, we will see two examples of developing a more robust recommendation system using FMs. We will start with a brief explanation of FM and their application to the cold-start recommendation problem.

Then we will see a short example of using an FM to developing a real-life recommendation system. After that, we will see an example using an improved version of the FM algorithm called a Neural Factorization Machine (NFM).

Factorization machines

FM-based techniques are at the cutting edge of personalization. They have proven to be extremely powerful with enough expressive capacity to generalize existing models, such as matrix/tensor factorization and polynomial kernel regression. In other words, this type of algorithm is a supervised learning approach that enhances the performance of linear models by incorporating second-order feature interactions that are absent in matrix factorization algorithms.

Existing recommendation algorithms require...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image