Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Apache Spark 2: Data Processing and Real-Time Analytics

You're reading from   Apache Spark 2: Data Processing and Real-Time Analytics Master complex big data processing, stream analytics, and machine learning with Apache Spark

Arrow left icon
Product type Course
Published in Dec 2018
Publisher Packt
ISBN-13 9781789959208
Length 616 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (7):
Arrow left icon
Sridhar Alla Sridhar Alla
Author Profile Icon Sridhar Alla
Sridhar Alla
Romeo Kienzler Romeo Kienzler
Author Profile Icon Romeo Kienzler
Romeo Kienzler
Siamak Amirghodsi Siamak Amirghodsi
Author Profile Icon Siamak Amirghodsi
Siamak Amirghodsi
Broderick Hall Broderick Hall
Author Profile Icon Broderick Hall
Broderick Hall
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Meenakshi Rajendran Meenakshi Rajendran
Author Profile Icon Meenakshi Rajendran
Meenakshi Rajendran
Shuen Mei Shuen Mei
Author Profile Icon Shuen Mei
Shuen Mei
+3 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Title Page
Copyright
About Packt
Contributors
Preface
1. A First Taste and What's New in Apache Spark V2 FREE CHAPTER 2. Apache Spark Streaming 3. Structured Streaming 4. Apache Spark MLlib 5. Apache SparkML 6. Apache SystemML 7. Apache Spark GraphX 8. Spark Tuning 9. Testing and Debugging Spark 10. Practical Machine Learning with Spark Using Scala 11. Spark's Three Data Musketeers for Machine Learning - Perfect Together 12. Common Recipes for Implementing a Robust Machine Learning System 13. Recommendation Engine that Scales with Spark 14. Unsupervised Clustering with Apache Spark 2.0 15. Implementing Text Analytics with Spark 2.0 ML Library 16. Spark Streaming and Machine Learning Library 1. Other Books You May Enjoy Index

Contributors

About the Authors

Romeo Keinzler works as the chief data scientist in the IBM Watson IoT worldwide team, helping clients to apply advanced machine learning at scale on their IoT sensor data. He holds a Master's degree in computer science from the Swiss Federal Institute of Technology, Zurich, with a specialization in information systems, bioinformatics, and applied statistics. His current research focus is on scalable machine learning on Apache Spark. He is a contributor to various open source projects and works as an associate professor for artificial intelligence at Swiss University of Applied Sciences, Berne. He is a member of the IBM Technical Expert Council and the IBM Academy of Technology, IBM's leading brains trust.

 

Md. Rezaul Karim is a Research Scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Aachen, Germany. He holds a BSc and an MSc degree in Computer Science. Before joining Fraunhofer FIT, he worked as a Researcher at Insight Centre for Data Analytics, Ireland. Before this, he worked as a Lead Engineer at Samsung Electronics' distributed R&D Institutes in Korea, India, Turkey, and Bangladesh. Previously, he worked as a Research Assistant at the database lab, Kyung Hee University, Korea. He also worked as an R&D engineer with BMTech21 Worldwide, Korea. Before this, he worked as a Software Engineer with i2SoftTechnology, Dhaka, Bangladesh. He has more than 8 years' experience in the area of research and development with a solid understanding of algorithms and data structures in C, C++, Java, Scala, R, and Python. He has published several books, articles, and research papers concerning big data and virtualization technologies, such as Spark, Kafka, DC/OS, Docker, Mesos, Zeppelin, Hadoop, and MapReduce. He is also equally competent with deep learning technologies such as TensorFlow, DeepLearning4j, and H2O. His research interests include machine learning, deep learning, the semantic web, linked data, big data, and bioinformatics. Also he is the author of the following book titles: Large-Scale Machine Learning with Spark (Packt Publishing Ltd.) Deep Learning with TensorFlow (Packt Publishing Ltd.) Scala and Spark for Big Data Analytics (Packt Publishing Ltd.)

Sridhar Alla is a big data expert helping companies solve complex problems in distributed computing, large-scale data science and analytics practice. He presents regularly at several prestigious conferences and provides training and consulting to companies. He holds a bachelor's in computer science from JNTU, India. He loves writing code in Python, Scala, and Java. He also has extensive hands-on knowledge of several Hadoop-based technologies, TensorFlow, NoSQL, IoT, and deep learning.

 Siamak Amirghodsi (Sammy) is a world-class senior technology executive leader with an entrepreneurial track record of overseeing big data strategies, cloud transformation, quantitative risk management, advanced analytics, large-scale regulatory data platforming, enterprise architecture, technology road mapping, multi-project execution, and organizational streamlining in Fortune 20 environments in a global setting. Siamak is a hands-on big data, cloud, machine learning, and AI expert, and is currently overseeing the large-scale cloud data platforming and advanced risk analytics build out for a tier-1 financial institution in the United States. Siamak's interests include building advanced technical teams, executive management, Spark, Hadoop, big data analytics, AI, deep learning nets, TensorFlow, cognitive models, swarm algorithms, real-time streaming systems, quantum computing, financial risk management, trading signal discovery, econometrics, long-term financial cycles, IoT, blockchain, probabilistic graphical models, cryptography, and NLP.

 

Meenakshi Rajendran is a hands-on big data analytics and data governance manager with expertise in large-scale data platforming and machine learning program execution on a global scale. She is experienced in the end-to-end delivery of data analytics and data science products for leading financial institutions. Meenakshi holds a master's degree in business administration and is a certified PMP with over 13 years of experience in global software delivery environments. She not only understands the underpinnings of big data and data science technology but also has a solid understanding of the human side of the equation as well.Meenakshi’s favorite languages are Python, R, Julia, and Scala. Her areas of research and interest are Apache Spark, cloud, regulatory data governance, machine learning, Cassandra, and managing global data teams at scale. In her free time, she dabbles in software engineering management literature, cognitive psychology, and chess for relaxation.

 

Broderick Hall is a hands-on big data analytics expert and holds a master’s degree in computer science with 20 years of experience in designing and developing complex enterprise-wide software applications with real-time and regulatory requirements at a global scale. He has an extensive experience in designing and building real-time financial applications for some of the largest financial institutions and exchanges in USA. He is a deep learning early adopter and is currently working on a large-scale cloud-based data platform with deep learning net augmentation.Shuen Mei is a big data analytic platforms expert with 15+ years of experience in the financial services industry. He is experienced in designing, building, and executing large-scale, enterprise-distributed financial systems with mission-critical low-latency requirements. He is certified in the Apache Spark, Cloudera Big Data platform, including Developer, Admin, and HBase.Shuen is also a certified AWS solutions architect with emphasis on peta-byte range real-time data platform systems. Shuen is a skilled software engineer with extensive experience in delivering infrastructure, code, data architecture, and performance tuning solutions in trading and finance for Fortune 100 companies.

 

 

 

Packt Is Searching for Authors Like You

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image