Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Amazon SageMaker Best Practices

You're reading from   Amazon SageMaker Best Practices Proven tips and tricks to build successful machine learning solutions on Amazon SageMaker

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801070522
Length 348 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Randy DeFauw Randy DeFauw
Author Profile Icon Randy DeFauw
Randy DeFauw
Shelbee Eigenbrode Shelbee Eigenbrode
Author Profile Icon Shelbee Eigenbrode
Shelbee Eigenbrode
Sireesha Muppala Sireesha Muppala
Author Profile Icon Sireesha Muppala
Sireesha Muppala
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Processing Data at Scale
2. Chapter 1: Amazon SageMaker Overview FREE CHAPTER 3. Chapter 2: Data Science Environments 4. Chapter 3: Data Labeling with Amazon SageMaker Ground Truth 5. Chapter 4: Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing 6. Chapter 5: Centralized Feature Repository with Amazon SageMaker Feature Store 7. Section 2: Model Training Challenges
8. Chapter 6: Training and Tuning at Scale 9. Chapter 7: Profile Training Jobs with Amazon SageMaker Debugger 10. Section 3: Manage and Monitor Models
11. Chapter 8: Managing Models at Scale Using a Model Registry 12. Chapter 9: Updating Production Models Using Amazon SageMaker Endpoint Production Variants 13. Chapter 10: Optimizing Model Hosting and Inference Costs 14. Chapter 11: Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify 15. Section 4: Automate and Operationalize Machine Learning
16. Chapter 12: Machine Learning Automated Workflows 17. Chapter 13:Well-Architected Machine Learning with Amazon SageMaker 18. Chapter 14: Managing SageMaker Features across Accounts 19. Other Books You May Enjoy

Chapter 9: Updating Production Models Using Amazon SageMaker Endpoint Production Variants

A deployed production model needs to be updated for a variety of reasons, such as to gain access to new training data, to experiment with a new algorithm and hyperparameters, or to model predictive performance deteriorating over time. Any time you update a model with a new version in production, there is a risk of the model becoming unavailable during the update and the model's quality being worse than the previous version. Even after careful evaluation in the development and QA environments, new models need additional testing, validation, and monitoring to make sure they work properly in production.

When deploying new versions of models into production, you should carefully consider reducing deployment risks and minimizing downtime for the model consumers. It is also important to proactively plan for an unsuccessful model update and roll back to a previous working model. Replacing an...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime