To properly automate tasks, we need a platform so that they run automatically at the proper times. A task that needs to be run manually is not really fully automated. But, in order to be able to leave them running in the background while worrying about more pressing issues, the task will need to be adequate to run in fire-and-forget mode. We should be able to monitor that it runs correctly, be sure that we are capturing future actions (such as receiving notifications if something interesting arises), and know whether there have been any errors while running it.
Ensuring that a piece of software runs consistently with high reliability is actually a very big deal and is one area that, to be done properly, requires specialized knowledge and staff, which typically go by the names of sysadmin, operations, or SRE (Site Reliability Engineering).
In this article, we will learn how to prepare and automatically run tasks. It covers how to program tasks to be executed when they should, instead of running them manually, and how to be notified if there has been an error in an automated process.
This article is an excerpt from a book written by Jaime Buelta titled Python Automation Cookbook. The Python Automation Cookbook helps you develop a clear understanding of how to automate your business processes using Python, including detecting opportunities by scraping the web, analyzing information to generate automatic spreadsheets reports with graphs, and communicating with automatically generated emails. To follow along with the examples implemented in the article, you can find the code on the book's GitHub repository.
It all starts with defining exactly what task needs to be run and designing it in a way that doesn't require human intervention to run.
Some ideal characteristic points are as follows:
A command-line program has a lot of those characteristics already. It has a clear way of running, with defined parameters, and the result can be stored, even if just in text format. But, it can be improved with a config file to clarify the parameters and an output file.
We'll start by following a structure in which the main function will serve as the entry point, and all parameters are supplied to it. The definition of the main function with all the explicit arguments covers points 1 and 2. Point 3 is not difficult to achieve. To improve point 2 and 5, we'll look at retrieving the configuration from a file and storing the result in another.
import argparse
def main(number, other_number):
result = number * other_number
print(f'The result is {result}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n1', type=int, help='A number', default=1)
parser.add_argument('-n2', type=int, help='Another number', default=1)
args = parser.parse_args()
main(args.n1, args.n2)
import argparse
import configparser
def main(number, other_number):
result = number * other_number
print(f'The result is {result}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n1', type=int, help='A number', default=1)
parser.add_argument('-n2', type=int, help='Another number', default=1)
parser.add_argument('--config', '-c', type=argparse.FileType('r'),
help='config file')
args = parser.parse_args()
if args.config:
config = configparser.ConfigParser()
config.read_file(args.config)
# Transforming values into integers
args.n1 = int(config['DEFAULT']['n1'])
args.n2 = int(config['DEFAULT']['n2'])
main(args.n1, args.n2)
[ARGUMENTS] n1=5 n2=7
$ python3 prepare_task_step2.py -c config.ini The result is 35 $ python3 prepare_task_step2.py -c config.ini -n1 2 -n2 3 The result is 35
import argparse
import sys
import configparser
def main(number, other_number, output):
result = number * other_number
print(f'The result is {result}', file=output)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n1', type=int, help='A number', default=1)
parser.add_argument('-n2', type=int, help='Another number', default=1)
parser.add_argument('--config', '-c', type=argparse.FileType('r'),
help='config file')
parser.add_argument('-o', dest='output', type=argparse.FileType('w'),
help='output file',
default=sys.stdout)
args = parser.parse_args()
if args.config:
config = configparser.ConfigParser()
config.read_file(args.config)
# Transforming values into integers
args.n1 = int(config['DEFAULT']['n1'])
args.n2 = int(config['DEFAULT']['n2'])
main(args.n1, args.n2, args.output)
$ python3 prepare_task_step5.py -n1 3 -n2 5 -o result.txt $ cat result.txt The result is 15 $ python3 prepare_task_step5.py -c config.ini -o result2.txt $ cat result2.txt The result is 35
Note that the argparse module allows us to define files as parameters, with the argparse.FileType type, and opens them automatically. This is very handy and will raise an error if the file is not valid.
The configparser module allows us to use config files with ease. As demonstrated in Step 2, the parsing of the file is as simple as follows:
config = configparser.ConfigParser() config.read_file(file)
The config will then be accessible as a dictionary divided by sections, and then values. Note that the values are always stored in string format, requiring to be transformed into other types, such as integers.
Python 3 allows us to pass a file parameter to the print function, which will write to that file. Step 5 shows the usage to redirect all the printed information to a file.
Note that the default parameter is sys.stdout, which will print the value to the Terminal (standard output). This makes it so that calling the script without an -o parameter will display the information on the screen, which is helpful in debugging:
$ python3 prepare_task_step5.py -c config.ini The result is 35 $ python3 prepare_task_step5.py -c config.ini -o result.txt $ cat result.txt The result is 35
Cron is an old-fashioned but reliable way of executing commands. It has been around since the 70s in Unix, and it's an old favorite in system administration to perform maintenance, such as freeing space, rotating logs, making backups, and other common operations.
We will produce a script, called cron.py:
import argparse
import sys
from datetime import datetime
import configparser
def main(number, other_number, output):
result = number * other_number
print(f'[{datetime.utcnow().isoformat()}] The result is {result}',
file=output)
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', '-c', type=argparse.FileType('r'),
help='config file',
default='/etc/automate.ini')
parser.add_argument('-o', dest='output', type=argparse.FileType('a'),
help='output file',
default=sys.stdout)
args = parser.parse_args()
if args.config:
config = configparser.ConfigParser()
config.read_file(args.config)
# Transforming values into integers
args.n1 = int(config['DEFAULT']['n1'])
args.n2 = int(config['DEFAULT']['n2'])
main(args.n1, args.n2, args.output)
Note the following details:
Check that the task is producing the expected result and that you can log to a known file:
$ python3 cron.py [2018-05-15 22:22:31.436912] The result is 35 $ python3 cron.py -o /path/automate.log $ cat /path/automate.log [2018-05-15 22:28:08.833272] The result is 35
$ which python /your/path/.venv/bin/python
$ /your/path/.venv/bin/python /your/path/cron.py -o /path/automate.log $ /your/path/.venv/bin/python /your/path/cron.py -o /path/automate.log
$ cat /path/automate.log [2018-05-15 22:28:08.833272] The result is 35 [2018-05-15 22:28:10.510743] The result is 35
$ crontab -e
*/5 * * * * /your/path/.venv/bin/python /your/path/cron.py -o /path/automate.log
Note that this opens an editing Terminal with your default command-line editor.
$ contab -l */5 * * * * /your/path/.venv/bin/python /your/path/cron.py -o /path/automate.log
$ tail -F /path/automate.log [2018-05-17 21:20:00.611540] The result is 35 [2018-05-17 21:25:01.174835] The result is 35 [2018-05-17 21:30:00.886452] The result is 35
The crontab line consists of a line describing how often to run the task (first six elements), plus the task. Each of the initial six elements mean a different unit of time to execute. Most of them are stars, meaning any:
* * * * * * | | | | | | | | | | | +-- Year (range: 1900-3000) | | | | +---- Day of the Week (range: 1-7, 1 standing for Monday) | | | +------ Month of the Year (range: 1-12) | | +-------- Day of the Month (range: 1-31) | +---------- Hour (range: 0-23) +------------ Minute (range: 0-59)
Therefore, our line, */5 * * * * *, means every time the minute is divisible by 5, in all hours, all days... all years.
Here are some examples:
30 15 * * * * means "every day at 15:30" 30 * * * * * means "every hour, at 30 minutes" 0,30 * * * * * means "every hour, at 0 minutes and 30 minutes" */30 * * * * * means "every half hour" 0 0 * * 1 * means "every Monday at 00:00"
Do not try to guess too much. Use a cheat sheet like crontab guru for examples and tweaks. Most of the common usages will be described there directly. You can also edit a formula and get a descriptive text on how it's going to run.
After the description of how to run the cron job, including the line to execute the task, as prepared in Step 2 in the How to do it… section.
An automated task's main characteristic is its fire-and-forget quality. We are not actively looking at the result, but making it run in the background. This recipe will present an automated task that will safely store unexpected behaviors in a log file that can be checked afterward.
As a starting point, we'll use a task that will divide two numbers, as described in the command line.
import argparse
import sys
def main(number, other_number, output):
result = number / other_number
print(f'The result is {result}', file=output)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n1', type=int, help='A number', default=1)
parser.add_argument('-n2', type=int, help='Another number', default=1)
parser.add_argument('-o', dest='output', type=argparse.FileType('w'),
help='output file', default=sys.stdout)
args = parser.parse_args()
main(args.n1, args.n2, args.output)
$ python3 task_with_error_handling_step1.py -n1 3 -n2 2 The result is 1.5 $ python3 task_with_error_handling_step1.py -n1 25 -n2 5 The result is 5.0
$ python task_with_error_handling_step1.py -n1 5 -n2 1 -o result.txt $ cat result.txt The result is 5.0 $ python task_with_error_handling_step1.py -n1 5 -n2 0 -o result.txt Traceback (most recent call last): File "task_with_error_handling_step1.py", line 20, in <module> main(args.n1, args.n2, args.output) File "task_with_error_handling_step1.py", line 6, in main result = number / other_number ZeroDivisionError: division by zero $ cat result.txt
import logging
import sys
import logging
LOG_FORMAT = '%(asctime)s %(name)s %(levelname)s %(message)s'
LOG_LEVEL = logging.DEBUG
def main(number, other_number, output):
logging.info(f'Dividing {number} between {other_number}')
result = number / other_number
print(f'The result is {result}', file=output)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n1', type=int, help='A number', default=1)
parser.add_argument('-n2', type=int, help='Another number', default=1)
parser.add_argument('-o', dest='output', type=argparse.FileType('w'),
help='output file', default=sys.stdout)
parser.add_argument('-l', dest='log', type=str, help='log file',
default=None)
args = parser.parse_args()
if args.log:
logging.basicConfig(format=LOG_FORMAT, filename=args.log,
level=LOG_LEVEL)
else:
logging.basicConfig(format=LOG_FORMAT, level=LOG_LEVEL)
try:
main(args.n1, args.n2, args.output)
except Exception as exc:
logging.exception("Error running task")
exit(1)
$ python3 task_with_error_handling_step4.py -n1 5 -n2 0 2018-05-19 14:25:28,849 root INFO Dividing 5 between 0 2018-05-19 14:25:28,849 root ERROR division by zero Traceback (most recent call last): File "task_with_error_handling_step4.py", line 31, in <module> main(args.n1, args.n2, args.output) File "task_with_error_handling_step4.py", line 10, in main result = number / other_number ZeroDivisionError: division by zero $ python3 task_with_error_handling_step4.py -n1 5 -n2 0 -l error.log $ python3 task_with_error_handling_step4.py -n1 5 -n2 0 -l error.log $ cat error.log 2018-05-19 14:26:15,376 root INFO Dividing 5 between 0 2018-05-19 14:26:15,376 root ERROR division by zero Traceback (most recent call last): File "task_with_error_handling_step4.py", line 33, in <module> main(args.n1, args.n2, args.output) File "task_with_error_handling_step4.py", line 11, in main result = number / other_number ZeroDivisionError: division by zero 2018-05-19 14:26:19,960 root INFO Dividing 5 between 0 2018-05-19 14:26:19,961 root ERROR division by zero Traceback (most recent call last): File "task_with_error_handling_step4.py", line 33, in <module> main(args.n1, args.n2, args.output) File "task_with_error_handling_step4.py", line 11, in main result = number / other_number ZeroDivisionError: division by zero
To properly capture any unexpected exceptions, the main function should be wrapped into a try-except block, as done in Step 4 in the How to do it… section. Compare this to how Step 1 is not wrapping the code:
try: main(...) except Exception as exc: # Something went wrong logging.exception("Error running task") exit(1)
The extra step to exit with status 1 with the exit(1) call informs the operating system that something went wrong with our script.
The logging module allows us to log. Note the basic configuration, which includes an optional file to store the logs, the format, and the level of the logs to display. Creating logs is easy. You can do this by making a call to the method logging.<logging level>, (where logging level is debug, info, and so on). logging.exception() is a special case that will create an ERROR log, but it will also include information about the exception, such as the stack trace.
Remember to check logs to discover errors. A useful reminder is to add a note on the results file, like this:
try: main(args.n1, args.n2, args.output) except Exception as exc: logging.exception(exc) print('There has been an error. Check the logs', file=args.output)
In this article, we saw how to define and design a task so that no human intervention is needed to run it. We learned how to use cron for automating a task. We further presented an automated task that will safely store unexpected behaviors in a log file that can be checked afterward.
If you found this post useful, do check out the book, Python Automation Cookbook to develop a clear understanding of how to automate your business processes using Python. This includes detecting opportunities by scraping the web, analyzing information to generate automatic spreadsheets reports with graphs, and communicating with automatically generated emails.
Write your first Gradle build script to start automating your project [Tutorial]
Ansible 2 for automating networking tasks on Google Cloud Platform [Tutorial]
Automating OpenStack Networking and Security with Ansible 2 [Tutorial]