Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

Comprehensive Review of 'Hands-On Genetic Algorithms with Python - 2nd Ed' by Ernest Namdar

Save for later
View related Packt books & videos

article-image

We are pleased to share a comprehensive review of "Hands-On Genetic Algorithms with Python - Second Edition", published by Packt, and written by Ernest Namdar. This review offers an in-depth exploration of the book's key themes and insights, providing readers with a thorough understanding of its value.

comprehensive-review-of-hands-on-genetic-algorithms-with-python-2nd-ed-by-ernest-namdar-img-0


Please find the review below:

"Hands-On Genetic Algorithms with Python" by Eyal Wirsansky stands out as an exemplary resource for anyone eager to explore the world of Genetic Algorithms (GAs). Wirsansky has crafted a comprehensive guide that caters to a wide spectrum of needs, making it an invaluable asset whether you are a student, researcher, or educator. This book brilliantly balances theoretical foundations with practical applications, providing a clear and thorough exploration of GAs.

The table of contents unfolds like pieces of a puzzle, fitting together seamlessly to reveal an impressive and coherent picture of GAs. The author has included a well-organized, meticulously documented, and accessible Python code repository. This hands-on approach empowers readers to gain practical experience, enabling them to apply the techniques to their own research and projects effectively.

The fact that the book has reached its second edition is a testament to its success and wide acceptance in the field. Similar to the first edition, Part 3 is the highlight, where the intersection of GAs and Artificial Intelligence (AI) is explored in depth. Topics such as Feature Selection for Machine Learning (ML) models, Hyperparameter Tuning, Architecture Optimization of Deep Learning Networks, and Reinforcement Learning with GAs are comprehensively covered, continuing to build on the solid foundation laid in the previous edition.

Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime

In this new edition, Wirsansky has introduced two captivating chapters: “Natural Language Processing (NLP)”, and “Explainable AI, Causality, and Counterfactuals with Genetic Algorithms”. These additions are not only timely but also extremely impactful, given the current prominence of these topics. The discussion on counterfactuals, though concise, manages to be both informative and profound, providing readers with a nuanced understanding of its applications. I eagerly anticipate the third edition, hoping to see more examples of GAs applied to XAI and Causality.

A notable addition to this edition is the chapter on Enhancing Performance with Concurrency and Cloud Strategies. This is particularly relevant for professionals dealing with big data or projects that demand swift execution. It introduces a new dimension to the book, equipping readers with strategies to handle computational challenges efficiently.

The final chapter offers a glimpse into other evolutionary and bio-inspired computation methods, serving as a valuable guide for fundamental researchers and curious learners looking to expand their knowledge beyond Genetic Algorithms. This "where-to-go" section opens new avenues for exploration and study.
Looking forward, it would be beneficial for future editions to address the (current) limitations of GAs. Given Eyal Wirsansky's expertise in both GAs and Deep Learning (DL), an exploration of how GAs could potentially revolutionize DL in the future would be particularly fascinating and insightful.